Fast Ion Conductor Nanofibers and Aramid Nanofibers with Hydrogen Bonds Synergistically Enhanced Composite Solid Electrolytes  

在线阅读下载全文

作  者:Hengying Xiang Lu Gao Dongjie Shi Long Jiao Bowen Cheng Nanping Deng Geng Li Weimin Kang 

机构地区:[1]State Key Laboratory of Separation Membranes and Membrane Processes,Tiangong University,Tianjin 300387,China [2]School of Textile Science and Engineering,Tiangong University,Tianjin 300387,China [3]National Supercomputer Center in Tianjin,Tianjin 300457,China [4]China Rare Earth Group Research Institute,Ganzhou 341000,Jiangxi,China [5]State Key Laboratory of Biobased Fiber Manufacturing Technology,Tianjin Key Laboratory of Pulp and Paper,Tianjin University of Science and Technology,Tianjin 300457,China

出  处:《Advanced Fiber Materials》2024年第3期883-899,共17页先进纤维材料(英文)

基  金:supported by the National Natural Science Foundation of China(52203066,22005216,51973157,61904123);the Tianjin Natural Science Foundation(18JCQNJC02900);National innovation and entrepreneurship training program for college students(202310058007);Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088);Tianjin Enterprise Science and Technology Commissioner Project(23YDTPJC00490);China Postdoctoral Science Foundation Grant(2023M742135);State Key Laboratory of Membrane and Membrane Separation,Tiangong University;supported as part of the opening fund of Key Laboratory of Rare Earths,Chinese Academy of Sciences.

摘  要:The low ionic conductivities,poor high-voltage stabilities,and lithium dendrite formation of polymer solid electrolytes preclude their use in all-solid-state lithium metal batteries(ASSLMBs).This work provides a simple and scalable technique for constructing fast ion conductor nanofibers(FICNFs)and poly-m-phenyleneisophthalamide(PMIA)nanofibers synergistically enhanced polyethylene oxide(PEO)-based composite solid electrolytes(CSEs)for ASSLMBs.The FICNFs,which were mainly composed of high loadings of ZrO_(2)or Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)nanoparticles,had a percolated ceramic phase inside the nanofibers,while the exposed nanoparticles formed continuous organic–inorganic interfaces with the PEO matrix to enable Li+transport.The interfacial transport rate between ZrO_(2)and PEO was calculated as 4.78×10^(–5)cm^(2)s^(−1)with ab initio molecular dynamics(AIMD)simulations.Besides,the PMIA nanofibers provided strong skeletal support for the CSEs,ensuring excellent mechanical strength and safety for thin CSEs even at high temperatures.More importantly,the amide groups in PMIA provided abundant hydrogen bonds with TFSI−,which lowered the lowest unoccupied molecular orbital(LUMO)level of lithium salts,thus promoting the generation of lithium fluoride-rich solid electrolyte interphase.Consequently,the modified CSEs exhibited satisfactory ionic conductivities(5.38×10^(–4)S cm^(−1)at 50℃)and notable Li dendrite suppression(>1500 h at 0.3 mAh cm^(−2)).The assembled LiFePO_(4)||Li full cells display ultra-long cycles(>2000 cycles)at 50℃ and 40℃.More strikingly,the LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)||Li cell also can stably run for 500 cycles,and the LiFePO_(4)||Li flexible pouch cells also cycled normally,demonstrating tremendous potential for practical application.

关 键 词:Composite solid electrolytes Multiple continuous Li^(+)transmission channels Rich hydrogen bond interactions Ultra-long stable cycle performance Flexible pouch cells 

分 类 号:TB383[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象