川西铜矿周边土壤铬含量高光谱反演研究  

Study on hyperspectral inversion of chromium content in soil around the West Sichuan copper mine

在线阅读下载全文

作  者:王光羽 杨斌[1,2,3] 陈卓尔 魏添翼[1] 杨坤 卓思杰 WANG Guangyu;YANG Bin;CHEN Zhuoer;WEI Tianyi;YANG Kun;ZHUO Sijie(School of Environment and Resource,Southwest University of Science and Technology,Mianyang 621010,China;Mianyang S&T City Division,National Remote Sensing Center of China,Mianyang 621010,China;Tianfu Institute of Research and Innovation,Southwest University of Science and Technology,Chengdu 621010,China)

机构地区:[1]西南科技大学环境与资源学院,四川绵阳621010 [2]国家遥感中心绵阳科技城分部,四川绵阳621010 [3]西南科技大学四川天府新区创新研究院,成都621010

出  处:《测绘工程》2025年第1期62-67,共6页Engineering of Surveying and Mapping

基  金:国家自然科学基金资助项目(41201541);四川省军民融合研究院“军民融合遥感大数据共享应用平台建设”项目联合资助(39000005)。

摘  要:矿产资源的开采,给其周边土壤带来许多环境问题,如何快速筛查出矿区周边土壤污染情况尤为重要。本文以川西某铜矿周边土壤作为研究对象,采用LASSO算法对SG平滑后的高光谱数据R SG和经过多元散射校正(MSC)、一阶微分(FD)、倒数变换(RT)的光谱数据进行特征波段的筛选。使用偏最小二乘回归(PLSR)、随机森林(RF)、支持向量机回归(SVR)、极端梯度提升(XGBoost)、反向传播神经网络(BPNN)5种模型进行反演。结果表明,R SG、MSC、FD筛选出的特征波段集中在近红外区域,RT筛选出的特征波段集中在可见光区域;MSC-SVR模型的R 2,RMSE和RPD分别为0.763、6.745、2.06,在所有模型中精度最高,该模型可用于研究区土壤中铬的快速监测。The extraction of mineral resources has brought many environmental problems to the surrounding soil,and it is particularly important to quickly screen for soil pollution in the mining area.This article takes the soil around a copper mine in western Sichuan as the research object.Using LASSO algorithm to screen feature bands for SG smoothed hyperspectral data R SG and spectral data after multivariate scattering correction(MSC),first-order differentiation(FD),and reciprocal transformation(RT).Perform inversion using five models:Partial Least Squares Regression(PLSR),Random Forest(RF),Support Vector Machine Regression(SVR),eXtreme Gradient Boosting(XGBoost),and Backpropagation Neural Network(BPNN).The results show that the feature bands selected by R SG,MSC,and FD are concentrated in the near-infrared region,while the feature bands selected by RT are concentrated in the visible light region;the R 2,RMSE,and RPD of the MSC-SVR model are 0.763,6.745,and 2.06,respectively,with the highest accuracy among all models.This model can be used for rapid monitoring of chromium in the study area.

关 键 词:高光谱反演 土壤重金属含量 光谱分析 川西铜矿 铬含量 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置] X53[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象