Detection of Streaks in Astronomical Images Using Machine Learning  

在线阅读下载全文

作  者:Charles Jeffries Ruben Acuna 

机构地区:[1]School of Computing and Augmented Intelligence,Arizona State University,Tempe,AZ 85281,USA

出  处:《Journal of Artificial Intelligence and Technology》2024年第1期1-8,共8页人工智能技术学报(英文)

摘  要:Satellites in low earth orbit(LEO)pose a challenge to astronomy observations requiring long exposure times or wide observation areas.As the number of satellites in LEO dramatically increases,it motivates an increased need for methods to filter out artifacts caused by satellites crossing into observation fields.This paper develops and evaluates a deep learning model based on U-Net to filter these artifacts from collected data.The proposed model is compared with two existing filtering methods on a dataset generated using the state-of-the-art tool Pyradon.Although the initial application of deep learning does include some unpredictable behavior not found in traditional algorithms,the proposed model outperforms the existing methods in overall accuracy while requiring significantly less computational time.This suggests that the application of deep learning to satellite artifact removal which has previously been underdeveloped in the literature may be an appropriate avenue.

关 键 词:ASTRONOMY CNN image processing streak detection U-Net 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象