检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jayesh Mohanrao Sarwade Sandip Bankar Surekha Janrao Kishor Sakure Rohini Patil Shudhodhan Bokefode Nilesh Kulal
机构地区:[1]School of Computing MIT-ADT University,Pune,India [2]School of Technology Management and Engineering,SVKM’s,NMIMS,NaviMumbai,India [3]K.J.Somaiya Institute of Technology,Sion,Mumbai,India [4]Terna Engineering College,NaviMumbai,India
出 处:《Journal of Artificial Intelligence and Technology》2024年第1期9-17,共9页人工智能技术学报(英文)
摘 要:In a brand new era,with chaotic scenario that exists within the world,people are undermined with diverse psychological assaults.There have been numerous sensible approaches on the way to understand and lessen those attacks.Bioscrypt developments have verified to be one of the beneficial approaches for intercepting these troubles.Identifying recognition through human iris organ is said as one of the well-known biometric strategies because of its reliability and higher accurate return in comparison to different developments.Reviewing beyond literatures,terrible imaging condition,low flexibility of version,and small length iris image dataset are the constraints desiring solutions.Among these kinds of developments,the iris popularity structures are suitable gear for the human identification.Iris popularity has been an energetic studies location for the duration of previous couple of decades,due to its extensive packages in the areas,from airports to native land protection border protection.In the past,various functions and methods for iris recognition have been presented.Despite of the very fact that there are many approaches published in this field,there are still liberal amount of problems in this methodology like tedious and computational intricacy.We suggest an all-encompassing deep learning architecture for iris recognition supported by a genetic algorithm and a wavelet transformation,which may jointly learn the feature representation and perform recognition to realize high efficiency.With just a few training photos from each class,we train our model on a well-known iris recognition dataset and demonstrate improvements over prior methods.We think that this architecture can be frequently employed for various biometric recognition jobs,assisting in the development of a more scalable and precise system.The exploratory aftereffects of the proposed technique uncover that the strategy is effective inside the iris acknowledgment.
关 键 词:BIOMETRICS genetics algorithm(GA) iris recognition machine learning wavelet transformation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49