Optimizing the Isolation Forest Algorithm for Identifying Abnormal Behaviors of Students in Education Management Big Data  

在线阅读下载全文

作  者:Bibo Feng Lingli Zhang 

机构地区:[1]Chongqing University of Technology,Chongqing,China

出  处:《Journal of Artificial Intelligence and Technology》2024年第1期31-39,共9页人工智能技术学报(英文)

摘  要:With the changes in educational models,applying computer algorithms and artificial intelligence technologies to data analysis in universities has become a research hotspot in the field of intelligent education.In response to the increasing amount of student data in universities,this study proposes to use an optimized isolated forest algorithm for recognizing features to detect abnormal student behavior concealed in big data for educational management.Firstly,it uses a logistic regression algorithm to update the calculation method of isolated forest weights and then uses residual statistics to eliminate redundant forests.Finally,it utilizes discrete particle swarm optimization to optimize the isolated forest algorithm.On this basis,improvements have also been made to the traditional gated loop unit network.It merges the two improved algorithm models and builds an anomaly detection model for collecting college student education data.The experiment shows that the optimized isolated forest algorithm has a recognition accuracy of 0.986 and a training time of 1s.The recognition accuracy of the improved gated loop unit network is 0.965,and the training time is 0.16s.In summary,the constructed model can effectively identify abnormal data of college students,thereby helping educators to detect students’problems in time and helping students to improve their learning status.

关 键 词:isolated forest algorithm education abnormal behavior big data DISTINGUISH 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象