Concavity Property of Minimal L^(2)Integrals with Lebesgue Measurable GainⅣ:Product of Open Riemann Surfaces  

在线阅读下载全文

作  者:Qi’an Guan Zheng Yuan 

机构地区:[1]School of Mathematical Sciences,Peking University,Beijing 100871,China

出  处:《Peking Mathematical Journal》2024年第1期91-154,共64页北京数学杂志(英文)

基  金:supported by National Key R&D Program of China 2021YFA1003100,NSFC-11825101,NSFC-11522101 and NSFC-11431013.

摘  要:In this article,we present characterizations of the concavity property of minimal L^(2)integrals degenerating to linearity in the case of products of analytic subsets on products of open Riemann surfaces.As applications,we obtain characterizations of the holding of equality in optimal jets L^(2)extension problem from products of analytic subsets to products of open Riemann surfaces,which implies characterizations of the product versions of the equality parts of Suita conjecture and extended Suita conjecture,and the equality holding of a conjecture of Ohsawa for products of open Riemann surfaces.

关 键 词:Plurisubharmonic function Multiplier ideal sheaf Minimal L^(2)integral CONCAVITY Optimal L^(2)extension theorem 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象