基于近红外光谱和化学计量学的蒲黄炭快速判别和定量分析方法研究  

Rapid Discriminate Analysis and Quantitative Analysis Methods for Carbonized Typhae Pollen Using Near Infrared Spectroscopy Coupled with Chemometrics

在线阅读下载全文

作  者:唐敏 李霄龙 李嘉琪 钟泳琪 梁生旺 戴胜云 孙飞 TANG Min;LI Xiaolong;LI Jiaqi;ZHONG Yongqi;LIANG Shengwang;DAI Shengyun;SUN Fei(School of Chinese Materia Medica,Guangdong Pharmaceutical University,Guangzhou 510006,China;Key Laboratory of Digital Quality Evaluation of Traditional Chinese Medicine,National Administration of Traditional Chinese Medicine,Guangzhou 510006,China;National Institutes for Food and Drug Control,Beijing 100050,China)

机构地区:[1]广东药科大学中药学院,广州510006 [2]国家中医药管理局中药数字化质量评价技术重点研究室,广州510006 [3]中国食品药品检定研究院,北京100050

出  处:《世界科学技术-中医药现代化》2024年第9期2385-2398,共14页Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology

基  金:国家自然科学基金委员会青年科学基金项目(82003949):基于“性状-组分-功效”动态关联融合MBPLS算法的蒲黄炭炮制机理和炮制“适中”科学内涵研究,负责人:孙飞;广州市科学技术局基础与应用基础研究项目(202201010349):基于“血清药物化学-代谢组学-整合药代动力学”的蒲黄炭炮制机理研究,负责人:孙飞。

摘  要:目的建立蒲黄炭炮制程度判别和多成分定量的近红外(Near infrared,NIR)快速分析方法。方法制备“不及”“适中”“太过”3种炮制规格的蒲黄炭样品186批,采集不同规格蒲黄炭的NIR光谱,分别采用偏最小二乘判别分析(Partial least squares discriminant analysis,PLS-DA)、K-最近邻(k-nearest neighbor,kNN)和支持向量机(Support vector machine,SVM)建立蒲黄炭炮制程度的判别分析模型,以准确度(Accuracy,ACC)和错误率(Error rate,ER)对不同类型判别模型的判别效果进行评价。然后采用偏最小二乘(Partial least squares,PLS)建立蒲黄炭中原儿茶酸、3-羟基苯甲酸、4-羟基苯甲酸、壬二酸、槲皮素、槲皮素-3-O-(2G-α-L-鼠李糖基)-芸香糖苷、山柰酚、山柰酚-3-O-(2G-α-L-鼠李糖基)-芸香糖苷、异鼠李素、香蒲新苷、异鼠李素-3-O-新橙皮糖苷和柚皮素的定量分析模型,计算校正集和验证集相关系数(r_(cal)、r_(pre))、校正集误差均方根(Root mean square error of calibration,RMSEC)、验证集误差均方根(Root mean square error of prediction,RMSEP)和性能偏差比(The ratio of prediction to deviation,RPD)对PLS模型预测性能进行评价。结果与PLS-DA和KNN模型相比,SVM模型对不同炮制程度蒲黄炭判别效果最优,校正集和验证集的ACC分别为90.08%和93.44%,ER分别为9.08%和5.21%。蒲黄炭中12种化学成分的PLS模型r_(cal)和r_(pre)均大于0.9,RPD均大于2.3。结论本文采用NIR光谱并结合化学计量学建立蒲黄炭炮制程度判别分析和多成分定量分析的快速检测方法,该方法快速、无损、准确,为快速判断蒲黄炭炮制程度和分析化学成分变化,保证蒲黄炭炮制工艺的稳定性和饮片质量的可控性提供科学依据和方法支撑。Objective To establish the rapid discriminate analysis and quantitative analysis methods for carbonized Typhae Pollen(CTP)using near infrared spectroscopy coupled with chemometrics.Methods A total of 186 batches of CTP samples were prepared and categorized into three group including light degree CTP,moderate CTP,and heavy degree CTP.The NIR spectra of these samples were characterized.Then partial least squares-discriminant analysis(PLS-DA),k-nearest neighbors(KNN),support vector machine(SVM)algorithms were separately applied to build the discriminant models.The performance of discriminant models was evaluated in terms of the accuracy(ACC)and the error rate(ER).The partial least squares algorithm was used to establish the quantitative model for the prediction of 3,4-dihydroxybenzoic acid,3-hydroxybenzoic acid,4-hydroxybenzoic acid,azelaic acid,quercetin,quercetin-3-(2Grhamnosylrutinoside),kaempferol,kaempferol-3-(2G-rhamnosylrutinoside),isorhamnetin,typhaneoside,isorhamnetin-3-O-neohesperidin,and naringenin of CTP samples.The correlation coefficients(r_(cal),r_(pre)),the root mean square error of calibration(RMSEC),the root mean square error of prediction(RMSEP),and the ratio of performance deviation(RPD)were calculated to assess the PLS model.Results Compared with PLS-DA and KNN models,the SVM model yielded the best classification.The ACC of SVM model was 90.08%for calibration set and 93.44%for prediction set,while the ER was 9.08%for calibration set and 5.31 for prediction set.The values of r_(cal) and r_(pre) for PLS models were greater than 0.9,and the RPD of that was greater than 2.3.Conclusion In this study,the NIR spectroscopy coupled with chemometrics was firstly applied to develop the rapid discriminant analysis and quantitative analysis methods for CTP.The NIR-based method is rapid,non-destructive,and accurate,and it provides the scientific basis and method support for the rapid judgment of the processing degree of CTP and analysis of the changes of chemical components to ensure the quality of CTP.

关 键 词:蒲黄炭 近红外光谱 化学计量学 判别分析 定量分析 

分 类 号:R284.1[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象