检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨旭东 李秋燕 高岭 刘鑫 邓雅妮 YANG Xu-dong;LI Qiu-yan;GAO Ling;LIU Xin;DENG Ya-ni(School of Computer Science,Xi’an Polytechnic University,Xi’an 710048;Henan Economic Research Institute,State Grid Corporation of China,Zhengzhou 450052,China)
机构地区:[1]西安工程大学计算机科学学院,陕西西安710048 [2]国网河南经济研究院,河南郑州450052
出 处:《计算机工程与科学》2024年第12期2171-2185,共15页Computer Engineering & Science
基 金:2024年国网河南合作项目(5217L0240004);陕西省社科项目(2024J280);陕西高校青年创新团队项目(20301007901)。
摘 要:近年来,围绕基于位置服务LBS过程中的隐私泄露问题,研究人员对基于位置匿名的隐私保护方法进行了深入的研究。然而,这些研究忽略了匿名协作过程中存在的性能与安全瓶颈问题和攻击者基于语义知识进行攻击导致匿名集合隐私泄露问题。为此,结合多区块链跨链协作与k-匿名的思想,提出了一种基于多区块链协作的分布式匿名位置隐私保护方法。为了解决集中式匿名导致的隐私泄露问题,首先基于私有区块链与公有区块链的跨链协作提出了一种匿名协作用户的选择方法;其次,为了确保匿名过程中的用户协作行为的可靠性以及跨链传递数据的正确性,设计了一种匿名协作共识机制;最后,为了解决个人相关语义被忽略导致的隐私泄露问题,结合差分隐私机制与语义多样熵的匿名位置选择方法,设计了一种匿名集合构造方法。在真实数据集上的实验表明,所提方法可以有效提高位置的语义隐私安全,并在隐私性与可用性方面优于现有方法。In recent years,researchers have conducted in-depth studies on location anonymity-based privacy protection methods amidst the issue of privacy leakage in location-based services(LBS).However,these studies overlook the performance and security bottlenecks inherent in the anonymity process during collaboration,as well as the potential for privacy leakage in anonymous sets due to attacks lever-aging semantic knowledge.To address these issues,this paper proposes a distributed anonymous location privacy protection method based on multi-blockchain collaboration,integrating the concepts of cross-chain collaboration across multiple blockchains and k-anonymity.In this approach,firstly,to tackle the privacy leakage caused by centralized anonymity,this paper present a method for selecting anonymous collaboration users based on cross-chain collaboration between private and public blockchains.Secondly,to ensure the reliability of user collaboration behavior during anonymity and the correctness of cross-chain data transmission,designing an anonymous collaboration consensus mechanism.Lastly,to mitigate privacy leakage arising from overlooked individual-related semantics,this paper devises an anonymous set construction method that combines differential privacy mechanisms with semantic diversity entropy for selecting anonymous locations.Experiments conducted on real-world datasets demonstrate that the proposed method can effectively enhance the semantic privacy security of locations,outperforming existing methods in terms of privacy and usability.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49