Research on Fso modulation classification algorithm based on deep learning  

在线阅读下载全文

作  者:LIU Xiaoxin LI Ming LIUZhao 

机构地区:[1]College of Physical and Electronic Science,Hubei Normal University,Huangshi 435002,China

出  处:《Optoelectronics Letters》2024年第12期757-763,共7页光电子快报(英文版)

摘  要:For FSO communication atmospheric turbulence has a large impact on signal modulation,the convolution-profile stellar data image conversion algorithm proposed in this paper performs data conversion on the received constellation maps,so that they retain more original signal feature images.A classification network based on the channel attention mechanism is proposed to classify the modulated signals by extracting the feature information in the image through the residual structure,and the attention mechanism assigns different weights of the channel features.Under the same data conversion algorithm,the proposed classification network achieves the highest recognition accuracy of 96.286%.

关 键 词:NETWORK ALGORITHM IMAGE 

分 类 号:TN92[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象