检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:FANG Wanqing ZHAO Xintian ZHANG Chengwei
机构地区:[1]Information Science and Technology College,Dalian Maritime University,Dalian 116026,China
出 处:《Optoelectronics Letters》2024年第12期764-768,共5页光电子快报(英文版)
摘 要:The majority of multi-agent reinforcement learning(MARL)methods for solving adaptive traffic signal control(ATSC)problems are dedicated to maximizing the throughput while ignoring fairness,resulting in a bad situation where some vehicles keep waiting.For this reason,this paper models the ATSC problem as a partially observable Markov game(POMG),in which a value function that combines throughput and fairness is elaborated.On this basis,we propose a new cooperative MARL method of fairness-aware multi-agent proximity policy optimization(FA-MAPPO).In addition,the FA-MAPPO uses graph attention neural networks to efficiently extract state representations from traffic data acquired through visual perception in multi-intersection scenarios.Experimental results in Jinan and synthetic scenarios confirm that the FA-MAPPO improves fairness while guaranteeing passage efficiency compared to the state-of-the-art(SOTA)methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.203.120