检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾彦超 郑耀华 金仲铂 李玟璇 李梓玮 陈西 袁超[2] ZENG Yanchao;ZHENG Yaohua;JIN Zhongbo;LI Wenxuan;LI Ziwei;CHEN Xi;YUAN Chao(CSG Guangdong Zhaoqing Power Supply Bureau,Zhaoqing,Guangdong 526060,China;College of Electrical and Information Engineering,Hunan University,Changsha,Hunan 410012,China)
机构地区:[1]南方电网广东肇庆供电局,广东肇庆526060 [2]湖南大学电气与信息工程学院,湖南长沙410012
出 处:《广东电力》2024年第11期64-71,共8页Guangdong Electric Power
基 金:广东电网有限责任公司科技项目〔031200KC23030007(GDKJXM20230277)〕。
摘 要:电力设备故障声学定位面临严重的背景噪声干扰,导致波达方向(direction of arrival,DOA)估计精度和实时性不佳,故障定位性能受限。对此,提出一种基于匹配滤波器和深度神经网络(match filter-deep neural networks,MF-DNN)的DOA估计技术,在低信噪比情况下,实现基于声学检测的高速电力设备故障声学定位。该方法通过匹配滤波器提高波达信号的信噪比,提取上三角元素特征降低了特征维度,采用自适应矩估计算法优化网络更新策略,降低了网络规模,最终实现低信噪比条件下对特征目标的高速DOA估计。实验结果表明,该方法在低信噪比下的估计速度和估计精度均优于传统算法。When using acoustic signals to locate faults in the power equipment,the system often experiences severe background noise interference,resulting in low accuracy of direction of arrival(DOA)estimation and slow localization speed.Therefore,this paper proposes a DOA estimation technique based on matched filters and deep neural networks(MF-DNN).When the signal to noise ratio(SNR)of acoustic signals is very low,this method achieves high-speed acoustic localization of power equipment faults.The method improves SNR of the arrival signal through a matched filter module and reduces the feature dimension by extracting the features of the upper triangle elements.It optimizes the network update strategy through the adaptive moment estimation(Adam)algorithm,reduces the network size,and ultimately achieves high-speed DOA estimation of feature targets under low SNR conditions.The experimental results show that the estimation speed and accuracy of this method are superior to traditional algorithms under low SNR acoustic signals.
关 键 词:故障定位 波达方向估计 匹配滤波器 深度神经网络 低信噪比
分 类 号:TM81[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33