检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨钰炜 迟长春[1] 李兴家 YANG Yuwei;CHI Changchun;LI Xingjia(School of Electrical Engineering,Shanghai Dianji University,Shanghai 201306,China)
出 处:《上海电机学院学报》2024年第6期344-350,共7页Journal of Shanghai Dianji University
摘 要:针对微型断路器剩余电寿命预测中特征选取单一、预测精度较低的问题,提出了基于注意力机制(AM)算法优化长短期记忆神经网络(LSTM)的预测模型。首先,通过搭建微型断路器电寿命试验平台提取特征参量;然后,采用皮尔逊相关系数(PCC)从众多特征参量中选择最优特征子集,从而有效表征电寿命退化过程;最后,将微型断路器的剩余电寿命作为预测标签,通过AM-LSTM预测模型对微型断路器的剩余电寿命进行预测。试验结果表明:该模型比GRU、LSTM模型预测效果好,有效精度达到87.78%,能够满足实际工程的需要。Aiming to address the issues of single-feature selection and low prediction accuracy in the residual life prediction of circuit breakers,a prediction model based on an attention mechanism(AM)algorithm is proposed to optimize the long short-term memory(LSTM)network.First,characteristic parameters are extracted using a circuit breaker electrical life test platform.Next,the pearson correlation coefficient(PCC)is employed to select the optimal feature subset from multiple parameters,effectively capturing the degradation process of the electrical life.Finally,the residual electrical life of the miniature circuit breaker is used as the prediction label,and the remaining life is predicted using the AM-LSTM model.Experimental results demonstrate that the proposed model outperforms both GRU and LSTM models,achieving an accuracy of 87.78%,which meets the practical engineering requirements.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.56.198