检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王洁[1] 王子曈 彭岩[1] 郝博文 WANG Jie;WANG Zitong;PENG Yan;HAO Bowen(School of Management,Capital Normal University,Beijing 100089,China)
出 处:《通信学报》2024年第11期141-156,共16页Journal on Communications
基 金:国家自然科学基金资助项目(No.62172287,No.62402328);北京市教育委员会科研计划基金资助项目(No.KM202410028007)。
摘 要:针对现有多模态社交媒体信息流行度预测算法对特征依赖强、泛化能力不足、面对少样本/冷启动环境表现不佳的问题,提出了一种基于大语言模型指令微调和人类对齐的多模态社交媒体流行度预测模型MultiSmpLLM。首先,定义面向冷启动用户的多模态社交媒体流行度预测任务。其次,构建多模态微调指令,并分别通过低秩适配微调(LoRA)和冻结微调(Freeze)方法对大语言基座模型(Llama3)进行指令微调。最后,提出了一种改进直接偏好优化(DPO)的算法IDPOP,通过构造偏好数据,并对DPO损失函数施加由参数调节的惩罚项,解决了基于人类反馈的强化学习(RLHF)算法训练不稳定、不收敛,以及标准DPO在社交媒体流行度预测任务中产生错误优化的问题。实验结果表明,MultiSmpLLM显著优于传统多模态预测模型和GPT-4o等多模态大语言模型。To address the limitations of strong feature dependency,insufficient generalization,and inadequate perfor‐mance in few-shot/cold-start settings in existing multimodal social media popularity prediction algorithms,a Mul‐tiSmpLLM model based on large language model with instruction fine-tuning and human alignment was proposed.Firstly,the task of multimodal social media popularity prediction for cold-start users was defined.Secondly,multimodal fine-tuning instructions were constructed,and the large language model(Llama3)was instructionally fine-tuned using the low-rank adaptation(LoRA)and parameter freeze(Freeze)method.Finally,an improved direct preference optimiza‐tion(DPO)algorithm IDPOP was developed by constructing preference data and adding a parameter-tuned penalty to the DPO loss function,resolving instability and non-convergence in RLHF and incorrect optimization in standard DPO for social media popularity prediction.Experiments show MultiSmpLLM outperforms conventional multimodal prediction models and multimodal large language models such as GPT-4o.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222