基于S^(4)PR网的多类型不可靠资源AMS自适应死锁控制策略  

Adaptive deadlock control strategy for multi-type unreliable resource AMS based on S^(4)PR

在线阅读下载全文

作  者:孙雅婷 刘伟 Sun Yating;Liu Wei(College of Computer Science&Engineering,Shandong University of Science&Technology,Qingdao Shandong 266590,China)

机构地区:[1]山东科技大学计算机科学与工程学院,山东青岛266590

出  处:《计算机应用研究》2024年第12期3786-3792,共7页Application Research of Computers

基  金:山东省自然科学基金面上项目(ZR2020MF033)。

摘  要:自动制造系统(AMS)产生的死锁为制造企业造成严重经济损失,为解决死锁问题,提出了更精确、有效的死锁控制策略。该策略首先研究多类型不可靠资源对死锁的影响,扩展S^(4)PR网建模,提出新的网结构表征死锁:资源严格极小虹吸,改进混合整数规划(MIP)方法计算资源严格极小虹吸,添加修复子网保证AMS活性;其次考虑资源故障问题,设计控制器与监督器确保系统稳健性,添加观察器,实现死锁控制自适应性;最后通过仿真实验验证该策略允许更多可达标记,得到多项式复杂度,对比分析其有效性与优越性。该策略研究复杂死锁与故障情况,为生产要求较高的制造过程提供稳健控制,在实际生产中实现高效化、智能化。Due to the deadlocks generated by AMS causing serious economic losses to manufacturing enterprises,this paper proposed a more precise and effective deadlock control strategy to solve the deadlock problem.This strategy firstly investigated the impact of multiple types of unreliable resources on deadlocks,extended S^(4)PR network modeling,and proposed a new network structure to characterize deadlocks:resource strict minimum siphon,improved MIP method to calculate resource strict minimum siphon,and added recovery subnets to ensure the activity of AMS.Secondly,it considered the issue of resource fai-lures,designed controllers and supervisors to ensure system robustness,added observers to achieve adaptive deadlock control.Finally,it conducted simulation experiments to verify that this strategy allows for more reachable markings and obtains polynomial complexity,and compared and analyzed its effectiveness and superiority.This strategy studied complex deadlocks and fault situations,providing robust control for manufacturing processes with high production requirements,and achieving efficiency and intelligence in actual production.

关 键 词:自动制造系统 不可靠资源 极小虹吸 自适应死锁控制 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象