检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:江雨濛 周昕 郝越翔 孙耀光 陈雪 李宜真 JIANG Yumeng;ZHOU Xin;HAO Yuexiang;SUN Yaoguang;CHEN Xue;LI Yizhen(Shale Gas Exploration and Development Project Management Department,PetroChina Chuanqing Drilling Engineering Co.,Ltd.,Chengdu,Sichuan 610083,China;Research Institute of Petroleum Exploration and Development,PetroChina Tarim Oilfield Company,Korla,Xinjiang 841000,China)
机构地区:[1]中国石油集团川庆钻探工程有限公司页岩气勘探开发项目经理部,四川成都610083 [2]中国石油塔里木油田公司勘探开发研究院,新疆库尔勒841000
出 处:《石油地球物理勘探》2024年第6期1305-1314,共10页Oil Geophysical Prospecting
摘 要:地震数据反射系数反演是联结地下储层和地震数据的桥梁,一直是研究的热点。目前反射系数反演大多基于L_(1)范数约束的稀疏脉冲反褶积。近年来,奇偶分解算法的出现使得子波间调谐效应减弱,这使得基于L_(1)范数约束的谱反演得到进一步应用。稀疏约束的能力关系到待求解反射系数的准确性,本文针对常用的L_(1)范数和Lp范数稀疏能力约束度不足的问题,引入TL_(1)范数(Transformed L_(1)Norm)稀疏约束,有利于获得更准确的反演反射系数;同时考虑反射系数较大的位置拟合能力需要增强,提出重加权TL_(1)范数(Reweighted Transformed L_(1)Norm,RTL_(1))进一步提高稀疏约束能力。参数测试结果证明了重加权类范数重建能力强于未重加权类范数,RTL_(1)在稀疏重建上的有效性。模型和实际数据处理结果证明RTL_(1)相比于常用的稀疏约束项更有利于提高谱反演的反射系数精度。Seismic data reflectivity inversion is a critical step to connect reservoir parameters and seismic data,which remains a research hotspot.At present,reflectivity inversion is mostly in the form of the sparse-spike deconvolution based on the L_(1)-norm constraint.In recent years,the emergence of the odd-even decomposition algorithm has weakened the inter-wavelet tuning effect,which makes the spectral inversion based on the L_(1)-norm constraint receive further applications.The sparse constraint ability is related to the accuracy of the inversion reflectivity remaining to be solved.Because of the insufficient sparsity constraint ability of the L_(1)-norm and the Lp norm,this paper introduce the transformed L_(1)(TL_(1))sparse constraint,which is conducive to the obtainment of a more accurate inversion reflectivity.Meanwhile,given that the fitting ability of the large reflectivity needs to be enhanced,this paper propose the reweighted TL_(1)(RTL_(1)) norm to further enhance the sparse constraint ability.Parameter tests show that the reconstruction ability of the reweighted norm is better than that of the non-reweighted norm,which proves the effectiveness of the RTL_(1) norm in sparse reconstruction.Models and field data processing demonstrate that the RTL_(1) norm is more effective in enhancing the accuracy of reflectivity inversion in spectral inversion compared to conventional sparse constraints.
关 键 词:稀疏脉冲反演 奇偶分解 谱反演 重加权TL1范数
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49