检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘俊泽 贺英彩 马秀琴 倪浩然 王雪萌 王青 贺晓帆 聂嘉欣 胡昊[1] 毛培胜[1] 贾善刚 LIU Jun-ze;HE Ying-cai;MA Xiu-qin;NI Hao-ran;WANG Xue-meng;WANG Qing;HE Xiao-fan;NIE Jia-xin;HU Hao;MAO Pei-sheng;JIA Shan-gang(College of Grassland Science and Technology,China Agricultural University,Beijing 100193,China;Qilian County Animal Husbandry and Veterinary Station,Haibei Tibetan Autonomous Prefecture,Qinghai Province 810499,China;Qilian County Grassland Station,Haibei Tibetan Autonomous Prefecture,Qinghai Province 810499,China)
机构地区:[1]中国农业大学草业科学与技术学院,北京100193 [2]青海省祁连县畜牧兽医站,青海海北藏族自治州810499 [3]青海省祁连县草原站,青海海北藏族自治州810499
出 处:《草地学报》2024年第12期3688-3697,共10页Acta Agrestia Sinica
基 金:“现代农业产业技术体系”(CARS-34);“国家重点研发计划”(2022YFD1300804);“四川省省院省校合作重点研发项目”(2023YFSY0012)资助。
摘 要:本研究利用多光谱成像技术对12个燕麦(Avena sativa)品种三年自然老化前后种子进行检测,并对其形态和光谱两种特征参数进行分析。结果显示,不同品种及其自然老化种子形态和光谱特征参数存在差异。基于形态和光谱特征参数的k-means聚类分析将不同燕麦品种种子大致归为两大类群:自然老化前和自然老化后。此外,运用课题组此前开发的nCDA-CNN模型对种子老化和发芽率预测,发现多光谱图像的预测准确度达到了100%。进一步分析发现,自然老化前后种子发芽率与颜色参数L、630 nm和690 nm波长光谱反射率具有显著正相关性(P<0.05);种子老化与四个形态参数(表面积、长度、形态参数B和饱和度)以及365 nm波长光谱反射率具有显著正相关性(P<0.05)。以上研究结果表明,不同品种的燕麦种子在自然老化前后的外部形态及光谱特征上存在显著差异(P<0.05),运用基于图像的机器学习模型能够准确鉴别种子老化和预测发芽率,对进一步研究老化种子的生理生化特征有一定的意义。In this study,seeds of 12 oat(Avena sativa)varieties before and after three years of natural aging were examined using multispectral imaging and analyzed for both morphological and spectral characterization parameters.The results showed that different varieties and their naturally aged seeds showed differences in both morphological and spectral characterization parameters.Based on the k-means clustering analysis of morphological and spectral parameters,the different oat varieties were roughly categorized into two major groups:one of which was the pre-naturally aged seeds and the other was the naturally aged seeds.In addition,the previously developed nCDA-CNN model was utilized for seed aging and germination probability prediction based on the training and validation sets,and it was found that the prediction accuracies of the multispectral images all reached 100%.Further analysis showed that the seed germination rate before and after natural aging was significantly correlated with different morphological parameters and spectral reflectance at 630 nm and 690 nm wavelengths;seed aging was significantly correlated with the four morphological parameters(surface area,length,morphological parameter B and saturation)as well as with spectral reflectance at 365 nm.The above findings indicated that different oat varieties seeds and their aging before and after natural aging had external morphological and spectral variability,and that seed aging and germination probability could be accurately identified and predicted by using an image-based machine learning model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.209.210