检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李海峰 许德操 LI Haifeng;XU Decao(State Grid Qinghai Electric Power Company,Xining 810000,China)
出 处:《电子设计工程》2025年第1期113-117,共5页Electronic Design Engineering
基 金:国网青海省电力公司科技项目(SGQHHBOOFZJS200266)。
摘 要:针对抽水蓄能电站中混凝土墙体现场检测难度大且传统巡检方式效率低的问题,提出了一种基于深度学习的裂缝检测系统。通过FCN网络和CNN网络的相似性匹配,可以有效地判断混凝土裂缝的位置、尺寸及深度等信息,实现对裂缝的自动检测。同时,设计了巡检机器人硬件构架与软件系统,实现巡检路线自主规划、自主导航和检测区域的自主识别等功能。基于CrackForest数据集对所提检测模型的性能进行了验证测试,结果表明所提模型的识别精度可达87.74%,平均误差仅为0.45,综合性能良好。In response to the difficulty of on⁃site inspection of concrete walls in pumped storage power plants and the low efficiency of traditional inspection methods,A crack detection system based on deep learning is proposed.By matching the similarity between FCN network and CNN network,the location,size,and depth of concrete cracks can be effectively determined,and automatic detection of cracks can be achieved.At the same time,the hardware architecture and software system of the inspection robot were designed to achieve functions such as autonomous planning of inspection routes,autonomous navigation,and autonomous identification of detection areas.The performance of the proposed detection model was verified and tested based on the CrackForest dataset,and the results showed that the recognition accuracy of the proposed model can reach 87.74%,with an average error of only 0.45,indicating good overall performance.
关 键 词:抽水蓄能电站 裂缝检测 图像识别 深度学习 智能巡检
分 类 号:TP391.44[自动化与计算机技术—计算机应用技术] TN929.5[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28