检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王文兵 窦雪倩 谢金池 WANG Wenbing;DOU Xueqian;XIE Jinchi(The 29th Research Institute of CETC,Chengdu 610036,China)
机构地区:[1]中国电子科技集团公司第二十九研究所,四川成都610036
出 处:《舰船电子对抗》2024年第6期96-100,共5页Shipboard Electronic Countermeasure
摘 要:频谱管控旨在减少己方用频设备间自扰、互扰。掌握设备当前的用频情况,是对设备用频或辐射进行动态管控的前提。在实际应用中,往往难以保证用频设备上报信息的准确性,而监测设备采集到的设备信号也会呈现出相对复杂的样式。传统的信号识别方法主要针对固定、常发的信号,对于偶发、时变的信号难以发挥作用。提出了一种基于深度学习的信号识别方法,通过构造信号的时频图像,利用图像分类技术,提取信号动态频谱特征,提升对偶发、时变信号识别的准确率,通过仿真实验,验证了方法的有效性。Spectrum management and control aims to reduce self-interference and mutual interference between own frequency equipments.To master the current frequency usage of equipment is the premise of implementing dynamic control of equipment frequency usage and radiation.In practical applications,it is often difficult to ensure the accuracy of the information reported through the frequency equipment,and the equipment signals collected by the monitoring equipment will also show a relatively complex style.The traditional signal recognition methods mainly target at the fixed and frequent signals,and it is difficult to play a role in the occasional and time-varying signals.A signal recognition method based on deep learning is proposed.By constructing time-frequency images and using image classification technology,the dynamic spectrum features of signals are extracted to improve the recognition accuracy of occasional and time-varying signals,and the effectiveness of the method are verified through simulation experiments.
分 类 号:TN971.1[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.238.221