检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:涂强 王留杰 TU Qiang;WANG Liujie(Guangdong Research Institute of Water Resources and Hydropower,Guangzhou 510635,China)
出 处:《广东水利水电》2024年第12期88-93,共6页Guangdong Water Resources and Hydropower
摘 要:随着无人机和高分辨率卫星技术在水利行业的广泛应用,水面目标图像识别的需求增多,精度要求提高。该文研究图像噪声对水面目标识别影响,达到优选降噪方法的目的。通过对含有高斯噪声,脉冲噪声及其他复合噪声的真实图像数据集,基于深度学习图像识别模型,分析不同噪声水平对图像识别率的影响;对比传统与深度学习降噪技术对提高目标识别准确性的作用,结果表明:适当的降噪处理显著增强了模型在噪声影响下的鲁棒性和准确性,凸显了在水面目标识别中应用高效图像降噪技术的重要性。With the development of storage and transmission technologies and the advancement of observational methods such as drones and high-resolution satellites,image data sources in hydrological systems have grown significantly,leading to a corresponding increase in the demand for object recognition within image data.This paper focuses on studying the impact of image noise on the recognition rate of hydrological targets.By introducing Gaussian noise,impulse noise,and other composite noises into a self-constructed real-world dataset and utilizing deep learning image recognition models,we analyze the effects of different noise levels on recognition rates.Additionally,we explore the role of traditional and deep learning denoising techniques in improving target recognition accuracy.The results demonstrate that appropriate denoising significantly enhances the robustness and accuracy of models under noisy conditions,underscoring the importance of applying efficient image denoising techniques in water surface target recognition.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7