矿井提升机故障分类及定位研究  

Research on Fault Classification and Localization of Mine Hoists

在线阅读下载全文

作  者:郭鹏 GUO Peng(Safety Management Department,Jinneng Holding Coal Industry Group,Datong 037003,Shanxi,China)

机构地区:[1]晋能控股煤业集团安全管理部,山西大同037003

出  处:《能源与节能》2024年第12期283-285,共3页Energy and Energy Conservation

摘  要:深入分析矿井提升机的故障分类与定位,建立智能维护系统,旨在提高矿井提升机运行效率和安全性。在故障分类方面,采用先进的检测数据采集、特征提取与选择以及分类模型建立方法。在定位技术应用方面,设计了有效的定位传感器安装方案,提出了创新性的定位算法,并构建了故障定位模型。最后,提出了智能维护系统,包括智能诊断平台、预测性维护策略、远程监测与控制系统,并强调了数据安全与隐私保护。研究为矿井提升机维护提供了全面而可行的解决方案。By conducting in-depth analysis of the fault classification and location of mine hoists,an intelligent maintenance system was established with the aim of improving the operational efficiency and safety of mine hoists.In terms of fault classification,advanced detection data collection,feature extraction and selection,as well as classification model establishment methods were adopted.In terms of the application of positioning technology,an effective installation scheme for positioning sensors was designed,innovative positioning algorithms were proposed,and a fault localization model was constructed.Finally,an intelligent maintenance system was proposed,including an intelligent diagnostic platform,predictive maintenance strategy,remote monitoring and control system,and emphasis was placed on data security and privacy protection.The research can provide a comprehensive and feasible solution for the maintenance of mine hoists.

关 键 词:矿井提升机 故障分类 智能维护系统 

分 类 号:TD633[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象