检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭丽丽[1] 王龙标 党建武[2,3,4] 丁世飞 GUO Li-Li;WANG Long-Biao;DANG Jian-Wu;DING Shi-Fei(School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116,China;College of Intelligence and Computing,Tianjin University,Tianjin 300350,China;Tianjin Key Laboratory of Cognitive Computing and Application(Tianjin University),Tianjin 300350,China;Japan Advanced Institute of Science and Technology,Ishikawa 9231292,Japan)
机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116 [2]天津大学智能与计算学部,天津300350 [3]天津市认知计算与应用重点实验室(天津大学),天津300350 [4]Japan Advanced Institute of Science and Technology,Ishikawa 9231292,Japan
出 处:《软件学报》2024年第12期5487-5508,共22页Journal of Software
基 金:国家自然科学基金(62276265,62176182,62276185);中央高校基本科研业务费专项资金(2022QN1096)。
摘 要:语音情感识别是情感计算的重要组成部分,在人机交互中占据重要的地位.准确地识别说话人的情感信息,有助于机器更好地理解用户的意图,进而提供良好的交互性以提升用户的体验.以离散语音情感为对象,对语音情感识别的理论和方法进行综述.首先在全面回顾情感识别发展历程的同时,提出一个语音情感识别综述框架.其次,介绍情感描述方法以及常用的情感语料库,旨在为语音情感识别提供基础支撑.然后,概述语音情感识别过程,主要包括特征提取和识别模型,重点归纳总结传统分类模型、经典深度模型、其他先进模型,并介绍常用的评价指标,同时基于评价指标对模型进行总结.最后,探讨语音情感识别领域所面临的挑战,并对未来的发展趋势进行展望.Speech emotion recognition is an important part of affective computing and plays an important role in human-computer interaction.Accurately distinguishing emotions helps machines understand users’intentions and provide better interactivity to enhance user experience.This study reviews the theories and methods of speech emotion recognition focusing on discrete speech emotions.Firstly,the study reviews the development of emotion recognition and presents an architecture of speech emotion recognition to summarize research progress.Secondly,emotion representation models and commonly used corpora are introduced to provide basic support for speech emotion recognition.Then,the process of speech emotion recognition is outlined,including feature extraction and recognition models,with a focus on traditional classification models,classical deep models,and other advanced models.Meanwhile,commonly used evaluation indicators are introduced and applied to provide a summary of models.Finally,the study discusses the challenges in speech emotion recognition and suggests possible directions for future research.
关 键 词:语音情感识别 声学特征 相位信息 分类模型 深度学习
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.235.215