基于变分模态优化法的丝杠副振动信号分析  

Ball Collision Analysis Signal in Lead Screw Pair Based on Hybrid Optimization VMD

在线阅读下载全文

作  者:朱燕芳 梁医[1,2] 刘佳运 沈永斌 冯虎田 ZHU Yanfang;LIANG Yi;LIU Jiayun;SHEN Yongbin;FENG Hutian(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Key Laboratory of the Ministry of Industry and Information Technology on General Technology of Functional Parts of Numerical Control Machine,Zhangjiagang 215600,China;不详)

机构地区:[1]南京理工大学机械工程学院,南京210094 [2]数控机床功能部件共性技术工业和信息化部重点实验室,张家港215600 [3]浙江天裕型钢科技有限公司,丽水323005

出  处:《组合机床与自动化加工技术》2024年第12期139-144,共6页Modular Machine Tool & Automatic Manufacturing Technique

基  金:工信部高质量发展专项项目(TC210H038);丽水市重点研发项目(2022KFQZDYF8-001)。

摘  要:滚珠丝杠是数控机床中常见的精密传动部件,在工作过程中的碰撞冲击会影响其使用寿命。首先,通过振动信号监测丝杠副的工作状态,有助于评价丝杠副的运行质量。根据碰撞与动力学分析得到滚珠的特征球通频率公式;其次,提出了基于遗传和粒子群混合优化的变分模态分解方法,通过优化变分模态分解方法中的参数惩罚因子和模态数以寻求最优解;最后,通过支持向量机方法对滚珠丝杠副正常与故障的振动信号进行分类预测。结果显示,基于遗传粒子群共同优化的变分模态分解方法在对振动信号球通频率的提取中,分解得到的信号分量更清,具有较大优势。Ball screw is a common precision transmission component in CNC machine tools,and the impact in the working process will affect its service life.Monitoring the working state of the lead screw by vibration signal is helpful to evaluate the running quality of the lead screw.According to the collision and dynamics analysis,the characteristic ball pass frequency formula of the ball is obtained,and then a variational mode decomposition method based on hybrid optimization of genetic and particle swarm is proposed.Finally,the normal and fault vibration signals of ball screw are classified and predicted by support vector machine method.The results show that the variational mode decomposition method based on genetic particle swarm co-optimization has a greater advantage in the extraction of the spherical frequency of vibration signals.

关 键 词:滚珠丝杠副 变分模态分解 优化设计 特征向量 

分 类 号:TH165[机械工程—机械制造及自动化] TG502[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象