城市排水管道缺陷智能检测方法研究  

Research on Intelligent Defect Detection Method for Urban Drainage Pipelines

在线阅读下载全文

作  者:雷江浩 刘光宇 张温 程静 LEI Jianghao;LIU Guangyu;ZHANG Wen;CHENG Jing(School of Building Services and Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China;School of Management,Xi’an University of Architecture and Technology,Xi’an 710055,China)

机构地区:[1]西安建筑科技大学建筑设备科学与工程学院,西安710055 [2]西安建筑科技大学管理学院,西安710055

出  处:《计算机测量与控制》2024年第12期81-87,共7页Computer Measurement &Control

基  金:陕西省自然科学基金面上项目(2024JC-YBMS-286)。

摘  要:针对城市排水管道缺陷自动化检测准确率低、目标定位不准确的问题,提出一种改进YOLOv8的排水管道缺陷检测模型;该模型在基线模型中引入感受野注意力卷积,并构建了C2F_RFAConv模块,通过空间感受野与卷积交互自适应学习的方式,增强模型对缺陷特征的提取能力;同时,提出一种混合注意力高低阶特征融合网络,将Backbone和Neck输出的3种不同尺度的低阶特征和高阶特征进行有效融合,增强模型学习图像全局上下文信息的能力;此外,对影响边界框回归的重叠情况、中心点距离、宽高偏差等因素进行了综合分析,设计Inner-MPDIoU损失函数,使模型适应不同尺寸的缺陷检测任务,提高缺陷目标边界框的定位准确率;经过实验验证发现,改进后的模型取得了93.9%的平均检测准确率,较改进之前提升3.7%,漏检率和误检率仅为9.1%和17.6%,较改进之前分别降低3.2%和2.7%。To address the problems of low automatic detection accuracy and inaccurate target positioning for urban drainage pipeline defects,an improved YOLOv8 drainage pipeline defect detection model is proposed.This model introduces receptive field attention convolution to the baseline model and constructs the C2F receptive field attention convolution(RFAConv)module,enhancing the model s ability to extract defect features through interactive adaptive learning of spatial receptive fields and convolutions.Additionally,a hybrid attention high-order and low-order feature fusion network is proposed,which effectively fuses the low-order and high-order features of three different scales by the backbone and neck outputs,enhancing the model's ability to learn the global contextual information of the image.The Inner-MPDIoU loss function is designed by comprehensively analyzing the factors affecting the bounding box regression,such as overlap,distance between the center points,and deviation in width and height.The model is suitable for the defect detection of different sizes,and improves the positioning accuracy of the defect target boundary box.Experimental results show that compared with the baseline model,the improved model achieves an average detection accuracy of 93.9%,with an increase of 3.7%,the missed detection rate and false detection rate of the improved model are reduced to 9.1%and 17.6%,with decreases of 3.2%and 2.7%,respectively.

关 键 词:城市排水管道 缺陷检测 YOLOv8 感受野注意力卷积 特征融合 Inner-MPDIoU 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象