检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韦选万 余金凤[1] 李小莲 黄伟东 WEI Xuan-wan;YU Jin-feng;LI Xiao-lian;HUANG Wei-dong(Guangxi Vocational College of Water Resources and Electric Power,Nanning 530023,China;Shenzhen Municipal Design&Research Institute Co.,Ltd.,Shenzhen 518037,China)
机构地区:[1]广西水利电力职业技术学院,南宁530003 [2]深圳市市政设计研究院有限公司,深圳518037
出 处:《广西水利水电》2024年第6期148-153,共6页Guangxi Water Resources & Hydropower Engineering
摘 要:地铁隧道及基坑的施工过程中存在着许多安全隐患,如地面沉降、隧道变形、基坑坍塌等,这些问题严重威胁着施工人员的安全和工程的顺利进行。如何实现地铁隧道的自动化监测,及时发现并预警安全隐患,成为了亟待解决的问题。近年来,视觉监测和机器学习技术的发展为地铁隧道及基坑自动化监测提供了新的可能。视觉监测技术可以通过摄像头等设备获取施工现场的实时图像信息,从而实现对施工现场的实时监测;而机器学习技术则可以通过对大量数据的学习和分析,自动识别出异常情况,从而提前预警安全隐患。本文对视觉监测与机器学习在地铁隧道自动化监测中的应用进行了研究。There are many hidden dangers during the construction of subway tunnels and foundation pits such as land subsidence,tunnel deformation and foundation pit collapse etc.,which seriously threaten the safety of construction personnel and smooth progress of the project.Automatic monitoring of subway tunnel,timely detection and early warning of safety hazards are urgently required.The development of visual monitoring and machine learning technology in recent years has provide new possibility for automatic monitoring of subway tunnel and foundation pit.With the visual monitoring technology,real-time image information of construction sites can be obtained through devices such as cameras,so as to realize real-time monitoring of construction sites.With the machine learning technology,through the study and analysis of a large amount of data,the abnormal situation is automatically identified,so as to provide early warning of safety hazards.Research was conducted on the application of visual monitoring and machine learning in subway tunnel automatic monitoring.
分 类 号:U456.3[建筑科学—桥梁与隧道工程] U231[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.142.113