Recognition of LPI radar signal based on dual efficient network  

在线阅读下载全文

作  者:Li Hui Qin Yibo Hou Qinghua Cheng Yuanyang 

机构地区:[1]School of Physics and Electronic Information Engineering,Henan Polytechnic University,Jiaozuo 454000,China

出  处:《The Journal of China Universities of Posts and Telecommunications》2024年第5期12-22,共11页中国邮电高校学报(英文版)

摘  要:Addressing the issue of low pulse identification rates for low probability of intercept(LPI)radar signals under low signal-to-noise ratio(SNR)conditions,this paper aims to investigate a new method in the field of deep learning to recognize modulation types of LPI radar signals efficiently.A novel algorithm combining dual efficient network(DEN)and non-local means(NLM)denoising was proposed for the identification and selection of LPI radar signals.Time-domain signals for 12 radar modulation types were simulated,adding Gaussian white noise at various SNRs to replicate complex electronic countermeasure scenarios.On this basis,the noisy radar signals undergo Choi-Williams distribution(CWD)time-frequency transformation,converting the signals into two-dimensional(2D)time-frequency images(TFIs).The TFIs are then denoised using the NLM algorithm.Finally,the denoised data is fed into the designed DEN for training and testing,with the selection results output through a softmax classifier.Simulation results demonstrate that at an SNR of-8 dB,the algorithm can achieve a recognition accuracy of 97.22%for LPI radar signals,exhibiting excellent performance under low SNR conditions.Comparative demonstrations prove that the DEN has good robustness and generalization performance under conditions of small sample sizes.This research provides a novel and effective solution for further improving the accuracy of identification and selection of LPI radar signals.

关 键 词:Choi-Williams distribution(CWD) dual efficient network(DEN) low probability of intercept(LPI)radar signals non-local means(NLM)denoising 

分 类 号:TN957.51[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象