检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bojian Qi Yong Yan Wenbiao Zhang
机构地区:[1]School of Computer and Artificial Intelligence,Beijing Technology and Business University,Beijing,100048,China [2]International Research Center for Carbon Neutralization,Hangzhou Beihang International Innovation Institute,Beihang University,Hangzhou,311115,China [3]School of Control and Computer Engineering,North China Electric Power University,Beijing,102206,China
出 处:《Particuology》2024年第12期115-123,共9页颗粒学报(英文版)
基 金:the National Natural Science Foundation of China (grant No.62303022)for its funding.
摘 要:Flow dynamics of binary particles are investigated to realize the monitoring and optimization of fluidized beds.It is a challenge to accurately classify the mass fraction of mixed biomass,considering the limitations of existing techniques.The data collected from an electrostatic sensor array is analyzed.Cross correlation,empirical mode decomposition(EMD),Hilbert-Huang transform(HHT)are applied to process the signals.Under a higher mass fraction of the wood sawdust,the segregation behavior occurs,and the high energy region of HHT spectrum increases.Furthermore,two data-driven models are trained based on a hybrid wavelet scattering transform and bidirectional long short-term memory(ST-BiLSTM)network and a EMD and BiLSTM(EMD-BiLSTM)network to identify the mass fractions of the mixed biomass,with accuracies of 92%and 99%.The electrostatic sensing combined with the EMD-BiLSTM model is effective to classify the mass fraction of the mixed biomass.
关 键 词:Fluidized beds BIOMASS Hilbert-Huang transformation Bidirectional long short-term memory network Electrostatic sensors
分 类 号:O313[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49