Artificial intelligence-guided strategies for next-generation biological sequence design  

在线阅读下载全文

作  者:Pengcheng Zhang Lei Wei Jiaqi Li Xiaowo Wang 

机构地区:[1]Ministry of Education Key Laboratory of Bioinformatics,Center for Synthetic and Systems Biology,Bioinformatics Division at the Beijing National Research Center for Information Science and Technology,Department of Automation,Tsinghua University,China

出  处:《National Science Review》2024年第11期11-14,共4页国家科学评论(英文版)

基  金:supported by the National Natural Science Foundation of China(62250007 and 62225307);the National Key R&D Program of China(2020YFA0906900 and 2023YFF1204500);the Beijing Municipal Natural Science Foundation(Z230015).

摘  要:Recent advancements in artificial intelli-gence(AI)have revolutionized our abil-ity to model biological sequences,paving the way for a new AI-driven paradigm in next-generation biological sequence de-sign.In this article,we introduce how AI is utilized for conducting digital experi-ments,navigating the vast sequence land-scape and elucidating the intricate con-nections between sequence and function through advanced generative and predic-tive modeling techniques.Additionally,we discuss the adoption of active learn-ing approaches to bridge the gap between digital simulations and wet-lab experi-ments,thereby significantly improving ef-ficiency in testing the most informative data to elevate the performance of AI models.

关 键 词:thereby utilized CONDUCTING 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象