基于原型联邦学习的工业故障诊断方法  

A Prototype Federated Learning Based Approach to Industrial Fault Diagnosis

在线阅读下载全文

作  者:徐丹丹 尤艳丽[2] 杨夏洁 樊重俊[1] Dandan Xu;Yanli You;Xiajie Yang;Chongjun Fan(Business School,University of Shanghai for Science and Technology,Shanghai;Shanghai Jingan District College(Shanghai Open University Jingan Branch),Shanghai)

机构地区:[1]上海理工大学管理学院,上海 [2]上海市静安区业余大学(上海开放大学静安分校),上海

出  处:《建模与仿真》2024年第6期6164-6176,共13页Modeling and Simulation

摘  要:故障诊断是保障工业系统安全运行的关键。当前,数据异构导致的非独立同分布问题使得传统的中心化数据处理方法在工业故障诊断领域面临着巨大的挑战。基于此本文提出一种基于原型联邦学习的时序数据处理方法AP-FED,该方法分为基础阶段和原型学习阶段。基础阶段进行数据增强、特征提取与全局参数的传递;原型学习阶段进行边缘设备端的原型提取与云端的全局原型聚合,确保在全局类原型的指导下,联邦学习的局部网络能够更有效地学习到特征表示。为验证模型有效性,使用真实工业数据集与多个联邦学习基线方法进行对比。经仿真实验,所提方法在FD、CWRU与CNC三个数据集中分别至少提升15.37%、21.30%与1.81%,证明该方法具有较高的精度和泛化能力。Fault diagnosis is the key to ensuring the safe operation of industrial systems.Currently,the nonindependent homogeneous distribution problem caused by data heterogeneity makes the tradi-tional centralized data processing method face great challenges in industrial fault diagnosis.This paper proposes a temporal data processing method AP-FED based on prototype federated learning,divided into a foundation phase and a prototype learning phase.The foundation phase carries out data enhancement,feature extraction,and global parameter transfer;the prototype learning phase carries out prototype extraction at the edge device end and global prototype aggregation in the cloud,ensuring that the local network of federated learning learns the feature representations more effi-ciently under the guidance of the global class prototypes.To validate the model’s effectiveness,real industrial datasets are used for comparison with multiple federated learning baseline methods.Af-ter simulation experiments,the proposed method improves at least 15.37%,21.30%,and 1.81%in the three datasets of FD,CWRU,and CNC,respectively,which proves that the method has high accu-racy and generalization ability.

关 键 词:联邦学习 原型网络 时间序列分类 分布式故障诊断 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象