检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龚婉婷 Wanting Gong(School of Environment and Architecture,University of Shanghai for Science and Technology,Shanghai)
机构地区:[1]上海理工大学环境与建筑学院,上海
出 处:《建模与仿真》2024年第6期6493-6502,共10页Modeling and Simulation
摘 要:变风量空调系统的故障检测与诊断对于提高建筑环境质量和实现节能至关重要。该系统故障类型复杂、数据量巨大、非线性特性强,传统的基于模型和基于规则的方法较难应用。本文提出了一种基于数据驱动的L2-BP神经网络故障诊断方法,首先通过TRNSYS模拟软件建立VAV空调系统仿真模型,获得四种常见故障的仿真模拟数据,然后利用运行数据和实际数据对L2-BP神经网络故障诊断模型进行验证。结果表明,本文提出的故障诊断模型能够克服单一方法的局限性,针对单一故障进行有效识别。Fault detection and diagnosis of variable air volume air conditioning systems is crucial to improving the quality of building environment and achieving energy conservation.The system has complex fault types,huge data volume,and strong nonlinear characteristics.Traditional model-based and rule-based methods are difficult to apply.This paper proposes a data-driven L2-BP neural network fault diagnosis method.First,a VAV air conditioning system simulation model is established through TRNSYS simulation software to obtain simulation data of four common faults.Then,the L2-BP neural network fault diagnosis model is verified using operating data and actual data.The results show that the fault diagnosis model proposed in this paper can overcome the limitations of a single method and effectively identify a single fault.
关 键 词:TRNSYS仿真模型 L2正则化 BP神经网络 变风量空调系统 故障诊断
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.139.13