机构地区:[1]西藏大学太阳紫外线实验室,西藏拉萨850000
出 处:《高原气象》2025年第1期46-55,共10页Plateau Meteorology
基 金:国家自然科学基金项目(41867041);西藏大学“太阳能创新团队与实验平台建设”项目。
摘 要:光合有效辐射(Photosynthetically Active Radiation,PAR)光谱是可见光中植物敏感波段,可被植物吸收用于光合作用。地面PAR光谱的特征直接影响植物的生长发育、形态、生理代谢、产量和适应能力等。为了进一步认识PAR在西藏高海拔地区分布特征,本文利用了国际高精度太阳光谱仪在2021-2022年期间对青藏高原珠峰、日喀则、拉萨和林芝地区晴天PAR光谱特征进行了实地观测。观测发现,青藏高原冬至和夏至期间PAR变化幅度较大,珠峰PAR单色辐射照度峰值夏至[1251 mW·(m^(2)·nm)^(-1)]-冬至[1935 mW·(m^(2)·nm)^(-1)]浮动差异高达684 mW·(m^(2)·nm)^(-1),冬至珠峰PAR光谱积分值(309.86 W·m^(-2))比AM0标准光谱PAR积分值(530.67 W·m^(-2))低41.61%,比AM1.5标准光谱PAR积分值(429.83 W·m^(-2))低28%;夏至西藏珠峰、日喀则、拉萨当日正午时刻PAR光谱均超过AM1.5标准光谱,且接近AM0标准光谱。西藏日喀则春分和秋分晴天当地正午PAR光谱峰值分别为1699 mW·(m^(2)·nm)^(-1)和1696 mW·(m^(2)·nm)^(-1),峰值基本相同,春分和秋分在西藏高原同一个观测点,由于其当地正午太阳高度角相同(如:日喀则均为59.84弧度),在其他影响光谱的因子相同的情况下PAR光谱特征基本相同。对比青藏高原与低海拔北京、安徽六安和河南濮阳地区的观测结果发现:冬至附近晴天(2021年11月20日),高海拔珠峰地区PAR光谱积分值(309.86 W·m^(-2))比低海拔安徽六安地区PAR积分值(264.4 W·m^(-2))高17.19%;夏至附近晴天(2021年6月3日),高海拔珠峰地区PAR光谱积分值(487.41 W·m^(-2))比低海拔北京地区PAR光谱积分值(394.15 W·m^(-2))高23.66%;秋分附近晴天(2021年9月19日),低海拔北京PAR光谱积分值(315.23 W·m^(-2))仅占高海拔珠峰地区PAR光谱积分值(442.49 W·m^(-2))的71.24%;春分附近晴天(2021年3月19日),高海拔日喀则地区PAR光谱积分值(413.34 W·m^(-2))比低海拔河南濮阳地区PAR光谱积分值(2Photosynthetically Active Radiation(PAR)spectrum,in visible light,is the wavelength range sensitive to plants and can be absorbed by them for photosynthesis.The characteristics of ground PAR spectrum directly affect the growth,development,morphology,physiological metabolism,yield,and adaptability of plants.In order to further understand the distribution characteristics of PAR in high-altitude areas of Xizang,this study utilized the International High-Precision Solar Spectroradiometer to conduct field observations of the PAR spectrum characteristics in the Mt.Everest,Shigatse,Lhasa,and Nyingchi regions of the Qinghai-Xizang Plateau from 2021 to 2022.The observations found that during the winter and summer solstices on the Qinghai-Xizang Plateau,the variation in PAR was significant.The peak monochromatic radiation illuminance of PAR at Mt.Everest during the summer solstice[1251 mW·(m^(2)·nm)^(-1)]to the winter solstice[1935 mW·(m^(2)·nm)^(-1)]fluctuated by up to 684 mW·(m^(2)·nm)^(-1).The winter solstice integrated value of PAR spectrum at Mt.Everest(309.86 W·m^(-2))was 41.61%lower than the AM0 standard spectrum integrated value of PAR(530.67 W·m^(-2)),and 28%lower than the AM1.5 standard spectrum integrated value of PAR(429.83 W·m^(-2)).During the summer solstice,the PAR spectra at Mt.Everest,Shigatse,and Lhasa in Xizang all exceeded the AM1.5 standard spectrum at noon and were close to the AM0 standard spectrum.In Shigatse,Xizang,during the spring equinox and autumn equinox,the peak PAR spectra were 1699 mW·(m^(2)·nm)^(-1)and 1696 mW·(m^(2)·nm)^(-1)respectively,with peak values being nearly identical.This similarity is due to the same local solar altitude angle at noon(e.g.,59.84 radians in Shigatse)during the equinoxes at the same observation point on the Tibetan Plateau,assuming other factors affecting the spectrum are the same.Comparison of observations between the Qinghai-Xizang Plateau and low-altitude areas such as Beijing,Anhui's Lu'an,and Henan's Puyang revealed that on a clear day near the w
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...