检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG Hong GONG Lei ZHAO Tianxin ZHANG Xijun WANG Hongyan 张红(College of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,P.R.China)
机构地区:[1]College of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,P.R.China
出 处:《High Technology Letters》2024年第4期370-379,共10页高技术通讯(英文版)
基 金:Supported by the Key R&D Program of Gansu Province(No.23YFGA0063);the National Natural Science Foundation of China(No.62363022,61663021);the Natural Science Foundation of Gansu Province(No.22JR5RA226,23JRRA886);the Gansu Provincial De-partment of Education:Industrial Support Plan Project(No.2023CYZC-35).
摘 要:Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial-temporal dynamic characteristics of traffic flow,this paper proposes a new traffic flow forecasting model spatial-temporal attention graph neural network(STA-GNN)by combining at-tention mechanism(AM)and spatial-temporal convolutional network.The model learns the hidden dynamic local spatial correlations of the traffic network by combining the dynamic adjacency matrix constructed by the graph learning layer with the graph convolutional network(GCN).The local tem-poral correlations of traffic flow at different scales are extracted by stacking multiple convolutional kernels in temporal convolutional network(TCN).And the global spatial-temporal dependencies of long-time sequences of traffic flow are captured by the spatial-temporal attention mechanism(STAtt),which enhances the global spatial-temporal modeling and the representational ability of model.The experimental results on two datasets,METR-LA and PEMS-BAY,show the proposed STA-GNN model outperforms the common baseline models in forecasting accuracy.
关 键 词:traffic flow forecasting graph convolutional network(GCN) temporal convolu-tional network(TCN) attention mechanism(AM)
分 类 号:U495[交通运输工程—交通运输规划与管理] TP183[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.147.65