Omics big data for crop improvement:Opportunities and challenges  

在线阅读下载全文

作  者:Naresh Vasupalli Javaid Akhter Bhat Priyanka Jain Tanu Sri Md Aminul Islam SMShivaraj Sunil Kumar Singh Rupesh Deshmukh Humira Sonah Xinchun Lin 

机构地区:[1]State Key Laboratory of Subtropical Silviculture,Zhejiang A&F University,Lin’an 311300,Zhejiang,China [2]Bamboo Industry Institute,Zhejiang A&F University,Lin’an 311300,Zhejiang,China [3]Research Center for Life Sciences Computing,Zhejiang Lab,Hangzhou 311121,Zhejiang,China [4]Amity Institute of Molecular Medicine and Stem Cell Research(AIMMSCR),Amity University Uttar Pradesh,Sector 125,Noida 201313,Uttar Pradesh,India [5]Gurdev Singh Khush Institute of Genetics,Plant Breeding and Biotechnology,Punjab Agricultural University,Ludhiana 141004,Punjab,India [6]Department of Botany,Majuli College,Majuli 785106,Assam,India [7]Department of Science,Alliance University,Bengaluru 562106,Karnataka,India [8]Stress Resilient Agriculture Laboratory,Department of Botany,University of Allahabad,Prayagraj 211002,Uttar Pradesh,India [9]Department of Biotechnology,Central University of Haryana,Mahendragarh 123031,Haryana,India

出  处:《The Crop Journal》2024年第6期1517-1532,共16页作物学报(英文版)

基  金:Fund for International Young Scientists by the National Natural Science Foundation of China (32150410354)to Naresh Vasupalli;the Department of Biotechnology,Government of India,for the Ramalingaswami Fellowship Award (BT/PR38279/GET/119/351/2020)to Humira Sonah;Haryana State Council for Science Innovation and Technology (HSCSIT)for the research grant PI ID 1270,HSCSIT/R&D/2024/511 to Rupesh Deshmukh and Humira Sonah.

摘  要:The application of advanced omics technologies in plant science has generated an enormous dataset of sequences,expression profiles,and phenotypic traits,collectively termed“big data”for their significant volume,diversity,and rapid pace of accumulation.Despite extensive data generation,the process of analyzing and interpreting big data remains complex and challenging.Big data analyses will help identify genes and uncover different mechanisms controlling various agronomic traits in crop plants.The insights gained from big data will assist scientists in developing strategies for crop improvement.Although the big data generated from crop plants opens a world of possibilities,realizing its full potential requires enhancement in computational capacity and advances in machine learning(ML)or deep learning(DL)approaches.The present review discuss the applications of genomics,transcriptomics,proteomics,metabolomics,epigenetics,and phenomics“big data”in crop improvement.Furthermore,we discuss the potential application of artificial intelligence to genomic selection.Additionally,the article outlines the crucial role of big data in precise genetic engineering and understanding plant stress tolerance.Also we highlight the challenges associated with big data storage,analyses,visualization and sharing,and emphasize the need for robust solutions to harness these invaluable resources for crop improvement.

关 键 词:Big data GWAS WGRS qQTL TWAS Systems biology CRISPR/Cas9 

分 类 号:S336[农业科学—作物遗传育种]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象