检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尤宁 韩立波 李世强 朱大明[1] 宋炜炜[1] 侯海燕 YOU Ning;HAN Li-bo;LI Shi-qiang;ZHU Da-ming;SONG Wei-wei;HOU Hai-yan(Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China;Academy of Artillery and Air Defense Zhengzhou Campus,Zhengzhou 450052,China;Department of Natural Resources of Shanxi Province,Taiyuan 030000,China)
机构地区:[1]昆明理工大学国土资源工程学院,昆明650093 [2]陆军炮兵防空兵学院郑州校区,郑州450052 [3]山西省自然资源厅,太原030000
出 处:《兰州大学学报(自然科学版)》2024年第6期764-772,781,共10页Journal of Lanzhou University(Natural Sciences)
基 金:云南省重大科技专项(202202AD080010)。
摘 要:基于DMSP/OLS-NPP/VIIRS夜间灯光数据集反演滇中城市群能源消费碳排放;利用Global Moran's I、LISA指标、时空跃迁矩阵,量化2006-2021年滇中城市群人均能源消费碳排放的时空动态;通过时空地理加权自回归模型分析人均碳排放驱动因素.结果表明,滇中城市群人均能源消费碳排放量之间存在正的空间相关性,且相关性持续波动上升;高-高集群主要分布在滇中城市群的核心区域,低-低集群主要位于西北方;县域人均碳排放的集聚类型相对稳定,有路径依赖效应,4种类型跃迁占主导地位,但趋势在逐渐减弱,空间凝聚度在2006-2009年达到91.84%,2017-2021年为69.39%;碳排放强度、总人口、城市化率、第二产业份额、第三产业份额、人均GDP是人均碳排放的主要驱动因素,人均GDP的作用在减弱,碳排放强度的作用在逐渐增强.Based on DMSP/OLS-NPP/VIIRS nighttime lighting dataset inversion of carbon emissions from energy consumption in the central Yunnan urban agglomeration(CYU),the spatial and temporal dynamics of carbon emissions were quantified from per-capita energy consumption in CYU from 2006 to 2021 by using Global Moran's I,local indicators of spatial association indicators;spatial and temporal jump matricesand in per capita driving factors of carbon emission were analyzed via the geographically and temporally weighted regression model.The results showed that there was a positive spatial correlation between per-capita carbon emissions from energy consumption in CYU,and this correlation continued to fluctuate and increase;the high-high clusters were mainly distributed in the core area of CYU,while the low-low clusters mainly located in the northwestern part of the province.The clustering type of per capita carbon emissions in the counties was relatively stable,with a path-dependence effect,and the type-4 leap dominated the area,but this tendency was weakening,and the spatial cohesion of per capita carbon emissions was relatively stable from 2006 to 2009.The cohesion reached 91.84%from 2006 to 2009,but only 67.35%from 2017 to 2021;carbon emission intensity,total population,urbanization rate,share of secondary industry,share of tertiary industry,and GDP per capita were the main drivers of per capita carbon emissions,and the role of GDP per capita was weakening,and the role of carbon emission intensity gradually increasing.
关 键 词:滇中城市群 碳排放 夜间灯光数据 空间分异 时空地理加权自回归模型
分 类 号:X322[环境科学与工程—环境工程] F426.2[经济管理—产业经济] X87
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15