基于电子鼻技术和GC-MS对不同产地乌药的鉴别和挥发油成分分析  

Idetification of volatile oil composition of Wuyao from different origins based on electronic nose technology and GC-MS

在线阅读下载全文

作  者:王子燕 王博诗 王一帆 管家齐[1] 张睿 WANG Zi-yan;WANG Bo-shi;WANG Yi-fan;GUAN Jia-qi;ZHANG Rui(Zhejiang University of Chinese Medicine,Hangzhou 310053)

机构地区:[1]浙江中医药大学,杭州310053

出  处:《中南药学》2024年第12期3181-3186,共6页Central South Pharmacy

基  金:浙江中医药大学校级科研项目人才专项(No.2023RCZXZK23)。

摘  要:目的 利用电子鼻技术和气相色谱质谱联用(GC-MS)法对不同产地乌药进行鉴别以及成分分析。方法 采用电子鼻检测来自10个产地的乌药块根气味信息,采用主成分分析(PCA)、线性判别分析(LDA)和负荷加载分析(LA)构建分类乌药鉴别模型实现快速区分,同时结合GC-MS对其挥发油成分进行定性和定量分析验证。结果 PCA分析表明第一主成分的贡献率为97.57%,总贡献率为99.08%。LDA分析表明第一主成分的贡献率为55.47%,总贡献率为92.61%。GC-MS从10个产地乌药中共检测出145种成分,13种共有成分,49种特有成分。结论 不同产地的乌药由于挥发性成分种类及相对含量有差异,并且电子鼻技术可以对不同产地乌药进行有效区分。可为后续此类药物药效动力学研究和质量控制研究提供科学规范的物质基础。Objective To identify the volatile compositions of Wuyao from different origins based on electronic nose and gas chromatography-mass spectrometry (GC-MS).Methods Electronic nose was used to detect the odor of Wuyao from 10 origins.Principal component analysis (PCA),linear discriminant analysis (LDA),and loading analysis (LA) were used to establish a classification model.GC-MS was used to verify the volatile components both qualitatively and quantitatively.Results The findings from the PCA reveal that primary component 1 accounts for a substantial proportion of 97.57%,and the total contribution rate reached 99.08%.LDA showed that the contribution rate of primary component 1 was 55.47%,while the total contribution rate reached 92.61%.Totally 145 components,13 common components and 49 specific components of samples were detected by GC-MS from Wuyao from 10 origins.Conclusion There is a clear difference in volatile constituents and relative content in Wuyao from different origins.Electronic nose can effectively distinguish Wuyao samples from different origins.It can provide standardized material basis for subsequent pharmacokinetics and quality control of similar herbs.

关 键 词:乌药 挥发油 质量控制 产地鉴别 

分 类 号:R282[医药卫生—中药学] R284.1[医药卫生—中医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象