面向网络文章的质量检测模型  

CONTENT QUALITY DETECTION MODEL FOR WEB ARTICLES

在线阅读下载全文

作  者:王凯楠 林欣欣 王薇[2] Wang Kainan;Lin Xinxin;Wang Wei(School of Cyberspace Security,Changchun University,Changchun 130022,Jilin,China;School of Computer Science and Technology,Changchun University,Changchun 130022,Jilin,China)

机构地区:[1]长春大学网络空间安全学院,吉林长春130022 [2]长春大学计算机科学技术学院,吉林长春130022

出  处:《计算机应用与软件》2024年第12期173-181,共9页Computer Applications and Software

基  金:吉林省社会科学基金项目(2017M21);吉林省教育科学“十三五”规划课题项目(GH170137)。

摘  要:互联网中存在大量良莠不齐的文章,严重破坏网络生态,为构建绿色网络空间,网络文章质量检测是一项重要且崭新的工作。基于腾讯数据集,从文章组织特征、书写特征和语义特征三个维度对文章质量检测展开研究,构建了组织子网、特征子网和文本子网三个子网络,扩展了三种注意力模式和四种Transformer模式,其中采用CNN+BiGRU、Attention+ACNN、Transformer模型Ⅰ使三个子网络的分类准确率分别达到80.6%、87%和92.9%,并使三个子网的组合模型OFT模型框架的分类准确率达到93.3%。此外,针对文本数据采用两种方式获取BERT词向量,最终OFT的准确率达到94.2%。实验结果表明,该模型效果优于现有模型。The existence of a large number of articles of mixed quality in the Internet has seriously damaged the network ecology.In order to build a green cyberspace,online article quality detection is an important and new task.Based on the Tencent dataset,we investigated article quality detection in three dimensions:article organization features,writing features and semantic features,and three sub-networks:organization sub-network,feature sub-network and text sub-network were built.Three attention models and four Transformer models were extended,in which CNN+BiGRU,Attention+ACNN,Transformer model I were used to make the classification accuracy of the three sub-networks reach 80.6%,87%,and 92.9%,respectively.The classification accuracy of the combined model OFT model framework of the three subnetworks reaches 93.3%.In addition,two methods were used to obtain BERT word vectors for text data,the final OFT s accuracy reaches 94.2%.The experimental results show that the proposed model outperforms the existing methods.

关 键 词:内容质量检测 四种Transformer模式 三种注意力模式 OFT模型框架 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象