检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘书帆 LIU Shufan(State Grid Jiujiang Ruichang City Power Supply Company,Jiujiang 332200,China)
机构地区:[1]国网九江瑞昌市供电公司,江西九江332200
出 处:《通信电源技术》2024年第24期129-131,共3页Telecom Power Technology
摘 要:目前,低压配电台区线损问题日益突出,而传统监测方法效率低下。提出一种基于近场通信(Near Field Communication,NFC)的低压配电台区线损变化趋势监测方法,通过构建NFC网络实现高频率、高精度的数据采集,利用长短期记忆(Long Short-Term Memory,LSTM)深度学习模型进行线损趋势预测。实验结果表明,与传统方法相比,该方法在预测精度、实时性以及适应性方面均有显著优势,尤其在短期预测中表现突出,为精细化线损管理提供了新的技术支持。At present,the problem of line loss in low-voltage distribution station area is increasingly prominent,while the efficiency of traditional monitoring methods is low.In this paper,a monitoring method of line loss trend in low-voltage distribution station area based on Near Field Communication(NFC)is proposed.By constructing NFC network,high-frequency and high-precision data acquisition is realized,and the line loss trend is predicted by using Long Short-Term Memory(LSTM)deep learning model.The experimental results show that compared with traditional methods,this method has obvious advantages in prediction accuracy,real-time performance and adaptability,especially in short-term prediction,which provides new technical support for refined line loss management.
分 类 号:TM714.3[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49