多特征加权图卷积网络的情感三元组抽取方法  

Sentiment Triplet Extraction Method for Multi-feature Weighted Graph Convolutional Networks

在线阅读下载全文

作  者:韩虎[1] 徐学锋 赵启涛 范雅婷 HAN Hu;XU Xuefeng;ZHAO Qitao;FAN Yating(School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学电子与信息工程学院,甘肃兰州730070

出  处:《湖南大学学报(自然科学版)》2024年第12期165-175,共11页Journal of Hunan University:Natural Sciences

基  金:国家自然科学基金资助项目(62166024)。

摘  要:方面级情感分析(aspect-based sentiment analysis,ABSA)旨在识别文本中用户对于特定方面所表达的观点信息,涉及方面词、意见词、情感极性等多种元素.现有研究大多关注独立任务,忽略了各元素间的特征交互,存在错误传播问题.基于多特征加权图卷积网络提出的情感三元组抽取方法将多个子任务联合建模;采用双仿射注意力模块捕捉词对间的关系概率分布,将文本语义、句法、位置等先验信息编码为多特征向量;利用图卷积操作实现多特征融合,最终实现方面术语-意见术语-情感极性的联合抽取.基于两组基准数据集进行评估实验,实验结果表明,多特征加权图卷积网络的情感三元组抽取方法有效缓解了流水线方法错误传播的状况,提升了三元组各元素间的特征交互,处理三元组抽取任务的能力显著优于现有基准模型.Aspect-based sentiment analysis(ABSA)aims to identify users’opinions expressed about specific text aspects using elements such as aspect words,opinion words,and sentiment polarity.However,the existing research mainly focuses on individual tasks,which neglects feature interactions between different parts and causes error propagation issues.A sentiment triplet extraction method based on a multi-feature weighted graph convolutional network is proposed to jointly model multiple subtasks.Then,a double affine attention module is employed to capture the relational probability distribution among word pairs.Additionally,prior information such as text semantics,syntax,and location is encoded into multi-feature vectors.Finally,graph convolution operations are utilized for achieving multi-feature fusion and realizing the joint extraction of aspect term-opinion term-sentiment polarity.Through the estimation test based on 2 benchmark datasets,the experimental results reveal that the sentiment triplet extraction method based on a multi-feature weighted graph convolutional network can effectively alleviate the error propagation issues in pipeline methods.Moreover,feature interaction among each factor of the triplet set is proposed,and it is proved that the model in the current work performs much better than the previous benchmark model at triplet extraction.

关 键 词:情感分析 图神经网络 网格标记 双仿射注意力 联合抽取 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象