EGSNet:An Efficient Glass Segmentation Network Based on Multi-Level Heterogeneous Architecture and Boundary Awareness  

在线阅读下载全文

作  者:Guojun Chen Tao Cui Yongjie Hou Huihui Li 

机构地区:[1]Qingdao Institute of Software,College of Computer Science and Technology,China University of Petroleum(East China),Qingdao,266580,China

出  处:《Computers, Materials & Continua》2024年第12期3969-3987,共19页计算机、材料和连续体(英文)

摘  要:Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-seeking real-time tasks such as autonomous driving.The inefficiency of the models is mainly due to employing homogeneous modules to process features of different layers.These modules require computationally intensive convolutions and weight calculation branches with numerous parameters to accommodate the differences in information across layers.We propose an efficient glass segmentation network(EGSNet)based on multi-level heterogeneous architecture and boundary awareness to balance the model performance and efficiency.EGSNet divides the feature layers from different stages into low-level understanding,semantic-level understanding,and global understanding with boundary guidance.Based on the information differences among the different layers,we further propose the multi-angle collaborative enhancement(MCE)module,which extracts the detailed information from shallow features,and the large-scale contextual feature extraction(LCFE)module to understand semantic logic through deep features.The models are trained and evaluated on the glass segmentation datasets HSO(Home-Scene-Oriented)and Trans10k-stuff,respectively,and EGSNet achieves the best efficiency and performance compared to advanced methods.In the HSO test set results,the IoU,Fβ,MAE(Mean Absolute Error),and BER(Balance Error Rate)of EGSNet are 0.804,0.847,0.084,and 0.085,and the GFLOPs(Giga Floating Point Operations Per Second)are only 27.15.Experimental results show that EGSNet significantly improves the efficiency of the glass segmentation task with better performance.

关 键 词:Image segmentation multi-level heterogeneous architecture feature differences 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象