检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Computer Science and Engineering,Southeast University,Nanjing,211189,China [2]Department of Media and Communication,City University of Hong Kong,Hong Kong SAR,999077,China
出 处:《Computers, Materials & Continua》2024年第12期4551-4573,共23页计算机、材料和连续体(英文)
摘 要:Microblogging platforms like X(formerly Twitter)and Sina Weibo have become key channels for spreading information online.Accurately predicting information spread,such as users’reposting activities,is essential for applications including content recommendation and analyzing public sentiment.Current advanced models rely on deep representation learning to extract features from various inputs,such as users’social connections and repost history,to forecast reposting behavior.Nonetheless,these models frequently ignore intrinsic confounding factors,which may cause the models to capture spurious relationships,ultimately impacting prediction performance.To address this limitation,we propose a novel Debiased Reposting Prediction model(DRP).Our model mitigates the influence of confounding variables by incorporating intervention operations from causal inference,enabling it to learn the causal associations between features and user reposting behavior.Specifically,we introduce a memory network within DRP to enhance the model’s perception of confounder distributions.This network aggregates and learns confounding information dispersed across different training data batches by optimizing the reconstruction loss.Furthermore,recognizing the challenge of acquiring prior knowledge of causal graphs,which is crucial for causal inference,we develop a causal discovery module within DRP(CD-DRP).This module allows the model to autonomously uncover the causal graph of feature variables by analyzing microblogging data.Experimental results on multiple real-world datasets demonstrate that our proposed method effectively uncovers causal relationships between variables,exhibits strong time efficiency,and outperforms state-of-the-art models in prediction performance(improved by 2.54%)and overfitting reduction(by 7.44%).
关 键 词:Repost prediction causal inference causal discovery memory network
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15