酸浸—萃取法回收废旧CPU中的金试验研究  

Recovery of Gold from Waste CPU by Acid Leaching and Extraction

在线阅读下载全文

作  者:柳林[1,2,3] 刘红召 王威[1,2,3] 曹耀华 王洪亮[1,2,3] 王科 赵俊利[4] LIU Lin;LIU Hongzhao;WANG Wei;CAO Yaohua;WANG Hongliang;WANG Ke;ZHAO Junli(Zhengzhou Institute of Multipurpose Utilization of Mineral Resources,CAGS,Zhengzhou 450006,China;Key Laboratory for Polymetallic Ores'Evaluation and Utilization,MNR,Zhengzhou 450006,China;Key Laboratory of Comprehensive Utilization of Gold Resource in Henan Province,Zhengzhou 450006,China;Zhengzhou Institute of Emerging Industrial Technology,Zhengzhou 450003,China)

机构地区:[1]中国地质科学院郑州矿产综合利用研究所,河南郑州450006 [2]自然资源部多金属矿综合利用评价重点实验室,河南郑州450006 [3]河南省黄金资源综合利用重点实验室,河南郑州450006 [4]郑州中科新兴产业技术研究院,河南郑州450003

出  处:《湿法冶金》2024年第6期620-623,共4页Hydrometallurgy of China

基  金:河南省科技攻关项目(232102321137)。

摘  要:研究了先采用王水浸出电子固体废弃物CPU,得到金质量浓度为256.1 mg/L的浸出液,再采用溶剂萃取法回收酸浸液中的金。考察了萃取剂种类、浓度、萃取时间、萃取相比、萃取温度对金萃取效果的影响。结果表明:以浓度80%的二丁基卡必醇为萃取剂,在相比V_(O)∶V_(A)=1∶4、常温条件下振荡反应10 min,金萃取率可达99.86%,再用草酸进行反萃取即可获得海绵金产品,回收效果较好。该法在CPU等含金电子固废的综合回收方面具有一定推广价值。Leaching solution with a mass concentration of 256.1 mg/L was obtained by using aqua regia to recover the gold from the CPU,and the gold in the acid leaching solution was recovered by solvent extraction.The effects of extractant type,concentration,extraction time,extraction phase ratio and extraction temperature on the gold extraction were investigated.The results show that with 80%dibutylcarbitol as the extraction agent,the gold extraction rate can reach 99.86%under the condition of V _(O)∶V _(A)=1∶4 and room temperature for 10 min.The sponge gold product can be obtained by stripping with oxalic acid.The recovery effect is good.The method has a certain popularization value in the comprehensive recovery of gold-containing electronic solid waste such as CPU.

关 键 词:电子固体废弃物 废旧CPU 回收  王水 浸出 萃取 二丁基卡必醇 

分 类 号:TF831[冶金工程—有色金属冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象