检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张岚泽 顾益军[1] 彭竞杰 ZHANG Lanze;GU Yijun;PENG Jingjie(School of Information and Cyber Security,People's Public Security University of China,Beijing 100038,China)
机构地区:[1]中国人民公安大学信息网络安全学院,北京100038
出 处:《计算机科学与探索》2025年第1期169-186,共18页Journal of Frontiers of Computer Science and Technology
基 金:中央高校基本科研业务费专项资金(2023JKF01ZK14)。
摘 要:传统GNN基于同构性假设对近邻节点实现低通滤波功能完成邻域相似信息的聚合嵌入。但在异构图中分属不同类别的节点彼此多建立联系,而相同类别的节点在图拓扑位置上距离较远。这一特点给注重近端邻域信息聚合的传统GNN带来“远端节点信息聚合缺失”与“同构性假设失灵”的问题。因此设计融合空域与频域自适应嵌入机制的异构图神经网络(DA-HGNN)以解决上述问题。针对问题一,设计“远端空域嵌入模块”,旨在通过高阶随机游走迁移概率筛选并聚合远端相似节点,补充“消息传递的跨邻域自适应性”;针对问题二,设计“近端频域嵌入模块”,构建滤波器分离节点高频与低频信号,并设计频域导向型注意力机制对上述信息进行频域偏好的自适应融合,从而减少“同构性假设失灵”所引入的噪声。在四个公开异构图数据集中取得最优实验结果,准确率上平均提高6.41个百分点。在灵敏度分析和消融实验中阐述了超参数的选择机制和各模块的实际性能,并验证了在异构网络中“节点结构相似性”“节点属性向量相似性”以及“节点同构性”三者之间仍呈现正相关关系这一结论。在异构真实数据集中验证了欺诈检测效果,AUC指标提升4.4个百分点。Traditional GNNs rely on the homophily assumption to implement low-pass filtering of neighboring nodes to aggregate and embed neighborhood similarity information.However,in heterophilic graphs,nodes belonging to different categories have many connections with each other,while nodes of the same category are far apart in the graph topology.This characteristic brings problems of“missing information aggregation of distant nodes”and“failure of homophily assumption”to traditional GNNs that focus on aggregating information in the proximal neighborhood.Therefore,this paper designs a heterophilic graph neural network(DA-HGNN)with a fusion of spatial-domain and frequency-domain adaptive embedding mechanisms to solve the above problems.To address the first problem,this paper designs a“distant spatial-domain embedding module”aimed at supplementing“cross-neighbor adaptive messaging”through high-order random walk migration probability selection and aggregation of distant similar nodes.To address the second problem,this paper develops a“proximal frequency-domain embedding module”to separate high-frequency and low-frequency signals using filters and designs a frequency-domain-guided attention mechanism to adaptively integrate the aforementioned information based on frequency preferences,thereby reducing the noise introduced by the“failure of homophily assumption”.The best experimental results are obtained on 4 publicly available heterophilic graph datasets,with an average increase in accuracy of 6.41 percentage points.Sensitivity analysis and ablation experiments describe the mechanism for selecting hyperparameters and the actual performance of each module,and verify the positive correlation among“node structural similarity”“node attribute vector similarity”and“node homophily”in heterophilic networks.Finally,the effectiveness of fraud detection is validated on a heterophilic real-world dataset,achieving an improvement of 4.4 percentage points in the AUC metric.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

