基于多模态数据的输电线路巡检方法研究进展  

Research Progress on Transmission Line Inspection Methods Based on Multimodal Data

在线阅读下载全文

作  者:陈康 陈彦炜 徐鸿宇 CHEN Kang;CHEN Yanwei;XU Hongyu(Suzhou Power Supply Branch,State Grid Jiangsu Electric Power Co.,Ltd.,Suzhou,Jiangsu 215000,China;Zhangjiagang Power Supply Branch,State Grid Jiangsu Electric Power Co.,Ltd.,Zhangjiagang,Jiangsu 215600,China;Kunshan Power Supply Branch,State Grid Jiangsu Electric Power Co.,Ltd.,Kunshan,Jiangsu 215300,China)

机构地区:[1]国网江苏省电力有限公司苏州供电分公司,江苏苏州215000 [2]国网江苏省电力有限公司张家港市供电分公司,江苏张家港215600 [3]国网江苏省电力有限公司昆山市供电分公司,江苏昆山215300

出  处:《上海电力大学学报》2024年第6期527-532,共6页Journal of Shanghai University of Electric Power

摘  要:输电线路巡检的目的是及时发现和消除线路设备的缺陷隐患,以保障电网的安全稳定运行。多模态数据的分析与处理为输电线路巡检提供了有效手段。综述了近年来基于多模态数据的输电线路巡检方法研究进展。首先,概述了输电线路巡检涉及的多个任务,如电力线、电力部件、电力杆塔的检测;其次,对多模态数据处理技术进行了全面介绍,包括热成像数据处理、可见光视觉检测和基于雷达的检测;最后,讨论了基于多模态数据的输电线路巡检方法目前存在的问题,并展望了进一步的研究方向。The purpose of power transmission line inspection is to promptly detect and eliminate potential defects in line equipment,ensuring the safe and stable operation of the power grid.The analysis and processing of multimodal data provide effective means for power transmission line inspection.This paper reviews the research progress of power transmission line inspection methods based on multimodal data in the past decade.Firstly,it outlines various tasks involved in power transmission line inspection,such as the detection of power lines,power components,and power towers.Secondly,a comprehensive introduction to multimodal data processing techniques is provided,including thermal imaging detection,visible light visual detection,and radar-based detection.Finally,the paper discusses the current challenges of power transmission line inspection methods based on multimodal data and proposes future research directions.

关 键 词:输电线路巡检 电力设备 多模态数据 数据融合 

分 类 号:TM755[电气工程—电力系统及自动化] TM930.1

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象