不规则脑区神经元的自适应网格分析方法  

Adaptive Grid Analysis Method for Neurons in Irregular Brain Areas

在线阅读下载全文

作  者:刘胜杰 杨昊 周航 文武[1] LIU Shengjie;YANG Hao;ZHOU Hang;WEN Wu(School of Computer Science,Chengdu University of Information Technology,Chengdu 610225,China)

机构地区:[1]成都信息工程大学计算机学院,四川成都610225

出  处:《软件导刊》2024年第12期226-233,共8页Software Guide

基  金:四川省自然科学基金项目(2022NSFSC0964);四川省科技计划项目(2023JDZH0034)。

摘  要:随着脑显微成像技术的发展,大量脑神经元的精细数据如今已能获取。如何高效准确地分析不规则脑区与脑神经元之间的关系是目前的瓶颈问题之一。现有分析方法主要对皮层脑区进行长方体网格分块,通过分块后的区域分析神经元的形态,然而该方法无法保持不规则脑区分块后的拓扑结构,导致神经元形态分析困难。针对该问题提出自适应网格划分方法,基于脑区二维序列轮廓图,通过适应性调整网格形状来匹配不规则脑区的几何特征,能够较好地包围划分区域。实验结果表明,该方法能够精准划分不规则脑区,保持脑区的拓扑结构,并对脑区内的神经元进行正确的统计分析,提供脑区分层的数据依据。With the development of brain microscopy imaging technology,it is now possible to obtain a large amount of fine data on brain neurons.How to efficiently and accurately analyze the relationship between irregular brain regions and brain neurons is currently one of the bottleneck problems.The existing analysis methods mainly divide cortical brain regions into rectangular grid blocks,and analyze the morphology of neurons through the segmented regions.However,this method cannot maintain the topological structure of irregular brain regions after partitioning,resulting in difficulties in analyzing neuronal morphology.An adaptive grid partitioning method is proposed to address this issue.Based on the two-dimensional sequence contour map of brain regions,the grid shape is adaptively adjusted to match the geometric features of irregular brain regions,which can effectively surround the partitioned area.The experimental results show that this method can accurately divide irregular brain regions,maintain the topological structure of brain regions,and perform correct statistical analysis on neurons within brain regions,providing data basis for brain region stratification.

关 键 词:自适应网格 不规则脑区 神经元 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象