检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张春霞[1] ZHANG Chunxia(Jinan Engineering Polytechnic,Jinan 250200,China)
出 处:《山东电力高等专科学校学报》2024年第6期48-54,共7页Journal of Shandong Electric Power College
摘 要:在包含光伏发电的综合能源系统中,准确预测多元负荷与光伏发电功率对负荷需求响应计划制定、能源设备调度以及可再生能源消纳至关重要。为此提出一种新型短期预测模型,用于同时预测电负荷、冷负荷、热负荷以及光伏发电功率。该模型采用基于硬参数共享的多任务学习和长短时记忆网络架构,并加入自注意力机制以防止性能下降,模型预测结果与其他模型相比准确性明显提高。It is crucial to accurately predict the multivariate loads and photovoltaic power for the development of load demand re-sponse plan,energy equipment scheduling,and renewable energy consumption in an integrated energy system that includes photo-voltaic power generation.To this end,a novel short-term forecasting model is proposed for the simultaneous forecasting of elec-tric,cooling and thermal multivariate loads as well as photovoltaic power.The model adopts the multi-task learning and long short-term memory network architecture based on hard parameter sharing,with the self-attention mechanism incorporated to pre-vent performance degradation,thus giving significantly higher accuracy in prediction results compared with other models.
关 键 词:自注意力机制 多任务学习 多元负荷 光伏发电功率 短期预测
分 类 号:TK01[动力工程及工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15