检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王月[1] 刘国庆 牛聪影 张振伟 孙建[4] 褚友艾 秦寒枝 WANG Yue;LIU Guo-qing;NIU Cong-ying;ZHANG Zhen-wei;SUN Jian;CHU You-ai;QIN Han-zhi(Dept.of Orthopedics,the First Affiliated Hospital of USTC,Hefei 230036,China;Dept.of Neurology,the First Affiliated Hospital of USTC,Hefei 230036,China;Dept.of Nursing Administration,the First Affiliated Hospital of USTC,Hefei 230036,China;Dept.of Emergency ICU,the First Affiliated Hospital of USTC,Hefei 230036,China;Dept.of Gastrointestinal Surgery,Tianjin First Central Hospital,Tianjin 300380,China)
机构地区:[1]中国科学技术大学附属第一医院骨科,安徽合肥230001 [2]中国科学技术大学附属第一医院神经内科,安徽合肥230001 [3]中国科学技术大学附属第一医院护理部,安徽合肥230001 [4]中国科学技术大学附属第一医院急诊ICU,安徽合肥230001 [5]天津市第一中心医院胃肠外科,天津300380
出 处:《护理学报》2024年第24期51-56,共6页Journal of Nursing(China)
摘 要:目的对髋部骨折患者术后30 d死亡风险预测模型进行范围综述,为临床护理实践及研究提供借鉴。方法聚焦髋部骨折患者术后30 d死亡风险预测模型,系统检索PubMed、Embase、Web of Science、中国知网、万方数据库、中国生物医学文献数据库及维普中文期刊服务平台等,筛选相关中英文文献,提取数据。结果共纳入21篇文献,髋部骨折患者术后30 d死亡率高达4.73%~33.76%,模型的总体预测效能良好,但整体偏倚风险较高。结论髋部骨折患者术后30 d死亡风险预测模型研究处于发展阶段,未来以期开发和/或验证低偏倚风险和高适应性的预测模型,指导临床实践。Objective To conduct a scoping review of models for predicting the risk of 30-day mortality after surgery in patients with hip fractures and providing reference for clinical nursing practice and research.Methods Focusing on the risk prediction models for 30-day mortality after surgery in patients with hip fractures,we systematically searched and screened relevant Chinese and English literature in PubMed,Embase,Web of Science,CNKI,Wanfang Data,SinoMed,VIP,etc.,and extracted the data.Results A total of 21 articles were collected,and 30-day mortality after surgery in patients with hip fractures ranged from 4.73%to 33.76%.The overall prediction efficiency of the model was good,but the overall bias risk was high.Conclusion The research on risk prediction models for 30-day mortality after surgery in patients with hip fractures is in the development stage.In the future,it is expected to develop and/or verify the prediction model with low bias risk and high adaptability to guide clinical practice.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3