基于ASNBD的钢厂冶金天车主起升电机轴承在线诊断方法研究  

Online Diagnosis Method of Main Lifting Motor Bearing for Metallurgical Overhead Crane in Steel Plant Based on ASNBD

在线阅读下载全文

作  者:杨来铭[1] 郭理宏[1] 郭勇[2] 彭延峰 YANG Laiming;GUO Lihong;GUO Yong;PENG Yanfeng(Hunan Valin Xiangtan Iron and Steel Co.,Ltd.,Xiangtan 411100,China;College of Mechanical and Electrical Engineering,Hunan University of Science and Technology,Xiangtan 411201,China)

机构地区:[1]湖南华菱湘潭钢铁有限公司,湖南湘潭411100 [2]湖南科技大学机电工程学院,湖南湘潭411201

出  处:《机械》2024年第12期1-9,共9页Machinery

基  金:国家自然科学基金(52375092);湖南省自然科学基金(2018JJ3187)。

摘  要:钢厂冶金天车主起升电机在高温、高尘和重载条件下长时间运行,若发生轴承故障,将影响炼钢效率,甚至造成重大安全事故。针对钢厂复杂环境下冶金天车主起升电机轴承在线故障诊断率低的问题,引入网络远程开关结合温度检测反馈实现数据采集仪的远程维护,利用千兆网交换机建立外环控制平台与网络远程开关和数据采集仪的高速实时通讯通道,实现数据的在线采集;采用自适应最稀疏窄带分解(ASNBD)方法将信号分解为内禀窄带分量,并进行电机轴承故障特征提取,结合滚动轴承故障机理建立主起升电机轴承可靠的在线故障诊断方法。该方法在某厂420 t冶金天车上应用,成功预测了主起升电机轴承滚子故障,为冶金天车主起升电机的可靠稳定运行提供了坚实的技术支撑。The main lifting motor of metallurgical overhead cranes in steel plants needs to operate for a long time under high temperature,high dust and heavy load conditions.If a bearing failure occurs,it will affect the efficiency of steelmaking and may even cause a major accident.This study aims to improve the reliability of online fault diagnosis for the main lifting motor bearing using in the metallurgical overhead crane under the complex environment of the steel plant.It introduced a reliable acquisition scheme applying network relay combined with temperature feedback for the maintenance of the data acquisition instrument.Then it established a reliable online diagnosis method for the main lifting motor bearing to carry out the fault feature extraction by using ASNBD to decompose the signal into the intrinsic narrow-band components.The method was applied on a 420-ton overhead crane in a plant,and successfully predicted the bearing roller failure of the main lifting motor.This method provides solid technical support for the reliable and stable operation of the main lifting motor of metallurgical overhead cranes.

关 键 词:冶金天车 轴承 ASNBD 故障诊断 数据采集 

分 类 号:TH218[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象