基于CEEMDAN的GNSS-MR海平面高度反演  

GNSS-MR Sea Level Height Inversion Based on CEEMDAN

在线阅读下载全文

作  者:林枫 LIN Feng(Fujian Institute of Surveying and Mapping,Fuzhou 350003,China)

机构地区:[1]福建省测绘院,福建福州350003

出  处:《测绘与空间地理信息》2024年第12期104-107,共4页Geomatics & Spatial Information Technology

摘  要:当前,全球变暖明显,海平面高度不断呈现上升趋势,快速、准确地获取海平面高度变化趋势对于保障沿海地区安全具有重要意义。随着全球导航卫星系统(GNSS)技术的不断发展与成熟,GNSS多路径反射测量(GNSS-MR)技术已经成为海平面高度变化反演的重要手段之一。然而受多种因素影响,采集信号存在信号混杂问题,基于此,本文提出一种利用自适应噪声的完全集合经验模态分解(CEEMDAN)提取信噪比中海水信号的方法,解决了地面、地物反射信号及噪声信号的影响。使用选取美国Friday Habor海港某测站信噪比(SNR)序列进行试验,结果表明,经CEEMDAN方法剔除噪声后,分量反演精度较原始序列提升了22.08%,相关系数增加了5.32%,验证了本文方法的有效性。Currently,global warming is evident,and sea level height is constantly showing an upward trend.How to quickly and accurately obtain the trend of sea level height changes is of great significance for the security of coastal areas.With the continuous development and maturity of Global Navigation Satellite System(GNSS)technology,GNSS Multipath Reflection Measurement(GNSS-MR)technology has become one of the important methods for inversing sea level height changes.However,due to various factors,there is a problem of signal mixing in the collected signals.Based on this,this paper proposes a method of using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)to extract seawater signals in signal-to-noise ratio,which solves the impact of ground,ground object reflection signals,and noise signals.The experiment was conducted using a signal-to-noise ratio(SNR)sequence selected from a measurement station at Friday Harbor in the United States.The results showed that after removing noise using the CEEMDAN method,the accuracy of component inversion was improved by 22.08%compared to the original sequence,and the correlation coefficient was increased by 5.32%,verifying the effectiveness of the proposed method.

关 键 词:多路径效应 信噪比 自适应噪声的完全集合经验模态分解 海平面高度 

分 类 号:P228[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象