检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Siyu DING Longfei WANG Qingzhou LU Xingjian WANG
机构地区:[1]Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China
出 处:《Chinese Journal of Aeronautics》2024年第12期139-155,共17页中国航空学报(英文版)
基 金:supported by the Science Center for Gas Turbine Project,China(No.P2022-B-II-020-001);the National Natural Science Foundation of China(No.52276123).
摘 要:For the design and optimization of advanced aero-engines,the prohibitively computational resources required for numerical simulations pose a significant challenge,due to the extensive exploration of design parameters across a vast design space.Surrogate modeling techniques offer a viable alternative for efficiently emulating numerical results within a notably compressed timeframe.This study introduces parametric Reduced-Order Models(ROMs)based on Convolutional Auto-Encoders(CAE),Fully Connected AutoEncoders(FCAE),and Proper Orthogonal Decomposition(POD)to fast emulate spatial distributions of physical variables for a supercritical jet into a supersonic crossflow under different operating conditions.To further accelerate the decision-making process,an optimization model is developed to enhance fuel-oxidizer mixing efficiency while minimizing total pressure loss.Results indicate that CAE-based ROMs exhibit superior prediction accuracy while FCAE-based ROMs show inferior predictive accuracy but minimal uncertainty.The latter may be ascribed to the markedly greater number of hyperparameters.POD-based ROMs underperform in regions of strong nonlinear flow dynamics,coupled with higher overall prediction uncertainties.Both AE-and POD-based ROMs achieve online predictions approximately 9 orders of magnitude faster than conventional simulations.The established optimization model enables the attainment of Pareto-optimal frontiers for spatial mixing deficiencies and total pressure recovery coefficient.
关 键 词:Reduced-Order Model(ROM) SUPERCRITICAL Jet in crossflow SCRAMJET Uncertainty quantification Pareto-optimal frontier
分 类 号:V235.21[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.79.7