VG-DOCoT:a novel DO-Conv and transformer framework via VAE-GAN technique for EEG emotion recognition  

在线阅读下载全文

作  者:Yanping ZHU Lei HUANG Jixin CHEN Shenyun WANG Fayu WAN Jianan CHEN 

机构地区:[1]School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

出  处:《Frontiers of Information Technology & Electronic Engineering》2024年第11期1497-1514,共18页信息与电子工程前沿(英文版)

基  金:supported by the National Key Research and Development Program of China(No.2022YFE0122700);the National Natural Science Foundation of China(No.61971230)。

摘  要:Human emotions are intricate psychological phenomena that reflect an individual’s current physiological and psychological state.Emotions have a pronounced influence on human behavior,cognition,communication,and decision-making.However,current emotion recognition methods often suffer from suboptimal performance and limited scalability in practical applications.To solve this problem,a novel electroencephalogram(EEG)emotion recognition network named VG-DOCoT is proposed,which is based on depthwise over-parameterized convolutional(DO-Conv),transformer,and variational automatic encoder-generative adversarial network(VAE-GAN)structures.Specifically,the differential entropy(DE)can be extracted from EEG signals to create mappings into the temporal,spatial,and frequency information in preprocessing.To enhance the training data,VAE-GAN is employed for data augmentation.A novel convolution module DO-Conv is used to replace the traditional convolution layer to improve the network.A transformer structure is introduced into the network framework to reveal the global dependencies from EEG signals.Using the proposed model,a binary classification on the DEAP dataset is carried out,which achieves an accuracy of 92.52%for arousal and 92.27%for valence.Next,a ternary classification is conducted on SEED,which classifies neutral,positive,and negative emotions;an impressive average prediction accuracy of 93.77%is obtained.The proposed method significantly improves the accuracy for EEG-based emotion recognition.

关 键 词:Emotion recognition Electroencephalogram(EEG) Depthwise over-parameterized convolutional(DO-Conv) Transformer Variational automatic encoder-generative adversarial network(VAE-GAN) 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TN911.7[自动化与计算机技术—控制科学与工程] R318[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象