Two-Stage Submodular Maximization Under Knapsack Problem  

在线阅读下载全文

作  者:Zhicheng Liu Jing Jin Donglei Du Xiaoyan Zhang 

机构地区:[1]Beijing Institute for Scientific and Engineering Computing,Beijing University of Technology,Beijing 100124,China [2]College of Taizhou,Nanjing Normal University,Taizhou 225300,China [3]Faculty of Management,University of New Brunswick,Fredericton,E3B 5A3,Canada [4]School of Mathematical Science,Institute of Mathematics,and Ministry of Education Key Laboratory of NSLSCS,Nanjing Normal University,Nanjing 210023,China

出  处:《Tsinghua Science and Technology》2024年第6期1703-1708,共6页清华大学学报自然科学版(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.12131003,12271259,11371001,11771386,and 11728104);the Natural Sciences and Engineering Research Council of Canada(NSERC)(No.06446);the Natural Science Foundation of Jiangsu Province(No.BK20200267);Qinglan Project.

摘  要:Two-stage submodular maximization problem under cardinality constraint has been widely studied in machine learning and combinatorial optimization.In this paper,we consider knapsack constraint.In this problem,we give n articles and m categories,and the goal is to select a subset of articles that can maximize the function F(S).Function F(S)consists of m monotone submodular functions fj,j=1,2,…,m,and each fj measures the similarity of each article in category j.We present a constant-approximation algorithm for this problem.

关 键 词:submodular function knapsack constraint MATROID 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象